
ltx-talk – A class for typesetting presentations∗

Joseph Wright†

Released 2026-01-16

Contents

I ltx-talk – Overall set up 1

1 ltx-talk implementation 1
1.1 Set up . 1
1.2 Additions for expl3 . 1
1.3 Extra variants . 3
1.4 Scratch space . 3
1.5 Option handling . 3
1.6 Setting up . 4
1.7 Math support . 5
1.8 Font selection . 5
1.9 Hyperlinks . 6
1.10 Tagging . 6

II ltx-talk-color – Color definitions 7

1 ltx-talk-color implementation 7
1.1 Existing definitions . 7
1.2 Document (and interface) commands 7
1.3 Color definition . 9
1.4 Semantic colors . 9

III ltx-talk-decode – Decoding overlay specs 10

1 ltx-talk-decode implementation 10

IV ltx-talk-frame – The structure of frames 17
∗This file describes v0.3.11, last revised 2026-01-16.
†E-mail: joseph@texdev.net

i

mailto:joseph@texdev.net

1 ltx-talk-frame implementation 17
1.1 Slides in frames . 17
1.2 Counters . 20
1.3 Frame options . 21
1.4 Tagging for headers . 21
1.5 Wallpaper . 22
1.6 The frame environment . 26

V ltx-talk-frame – The structure of frames 29

1 ltx-talk-frame-structure implementation 29
1.1 Columns . 29
1.2 Floats . 31
1.3 Footnotes . 33

VI ltx-talk-mode – Modes 34

1 ltx-talk-mode implementation 34

VII ltx-talk-overlay – Overlays 35

1 ltx-talk-overlay implementation 35
1.1 Utilities . 35
1.2 Opacity utilities . 36
1.3 Action commands and environments . 37
1.4 Non-action commands and environments 40
1.5 Fixed-size areas . 42
1.6 Adding overlays to existing commands 44

VIII ltx-talk-required – “Required” definitions 47

1 ltx-talk-required implementation 47
1.1 Standard design settings . 47
1.2 List support . 48

IX ltx-talk-structure – Structural commands 49

1 ltx-talk-structure implementation 49
1.1 Frame title . 49
1.2 Sectioning . 50
1.3 Table of contents . 52
1.4 Block environments . 54
1.5 Lists . 55
1.6 Theorems, etc. 58

ii

X ltx-talk-title – Title pages 59

1 ltx-talk-title implementation 59

Index 63

iii

Part I

ltx-talk – Overall set up
1 ltx-talk implementation
Start the DocStrip guards.

1 〈∗class〉
Identify the internal prefix.

2 〈@@=talk〉

1.1 Set up
Identify the package and give the over all version information.

3 \ProvidesExplClass {ltx-talk} {2026-01-16} {0.3.11}
4 {A class for typesetting presentations}

Get the right type of message.
5 \prop_gput:Nnn \g_msg_module_name_prop { talk } { ltx-talk }
6 \prop_gput:Nnn \g_msg_module_type_prop { talk } { Class }

Require the latest LATEX structures.
7 \IfFormatAtLeastF{2025-11-01}
8 {
9 \msg_new:nnnn { ltx-talk } { kernel-too-old }

10 { The~ltx-talk~class~requires~LaTeX~2025-11-01~or~later. }
11 {
12 You~have~tried~to~use~the~ltx-talk~class~with~a~LaTeX~kernel~release~
13 prior~to~2025-11-01;~the~required~functionality~is~missing.
14 }
15 \msg_fatal:nn { ltx-talk } { kernel-too-old }
16 }
17 \NeedsDocumentMetadata

1.2 Additions for expl3
Like \vcoffin_set:Nnn, so should be an easy enough addition.

18 \cs_gset_protected:Npn \vbox_set_to_wd:Nnn #1#2#3
19 {
20 \tex_setbox:D #1 \tex_vbox:D
21 {
22 \tex_hsize:D __box_dim_eval:n {#2}
23 \color_group_begin: #3 \par \color_group_end:
24 }
25 \box_dp:N #1 __box_dim_eval:n {#2}
26 }
27 \cs_gset_protected:Npn \vbox_set_to_wd:Nnw #1#2
28 {
29 \cs_set_protected:Npn __box_set_to_wd:
30 { \box_wd:N #1 __box_dim_eval:n {#2} }
31 \tex_setbox:D #1 \tex_vbox:D
32 \c_group_begin_token

1

33 \tex_hsize:D __box_dim_eval:n {#2}
34 \group_insert_after:N __box_set_to_wd:
35 \color_group_begin:
36 }

Some things from xbox that would be useful.
37 \cs_gset_protected:Npn \rule:nnn #1#2#3
38 {
39 \tex_vrule:D
40 height \dim_eval:n {#2} \exp_stop_f:
41 depth \dim_eval:n {#3} \exp_stop_f:
42 width \dim_eval:n {#1} \exp_stop_f:
43 \scan_stop:
44 }

Some extensions are needed to opacity support: this should only be here for a short
period.

45 \cs_gset_protected:Npn \opacity_begin:n #1
46 { __opacity_select:nN {#1} __opacity_backend_begin:n }
47 \cs_gset_protected:Npn \opacity_end:
48 { __opacity_backend_end: }
49 \AddToHook { begindocument }
50 {
51 \cs_gset_protected:Npe __opacity_backend_begin:n #1
52 {
53 \bool_lazy_any:nTF
54 {
55 { \sys_if_engine_pdftex_p: }
56 { \sys_if_engine_luatex_p: }
57 { \sys_if_engine_xetex_p: }
58 }
59 {
60 \tl_set:Nn \exp_not:N \l__opacity_backend_fill_tl {#1}
61 \tl_set:Nn \exp_not:N \l__opacity_backend_stroke_tl {#1}
62 \pdfmanagement_add:nnn { Page / Resources / ExtGState }
63 { opacity #1 }
64 { << /ca ~ #1 /CA ~ #1 >> }
65 \sys_if_engine_xetex:TF
66 { __kernel_backend_literal_pdf:n }
67 {
68 __kernel_color_backend_stack_push:nn
69 \exp_not:N \c__opacity_backend_stack_int
70 }
71 { /opacity #1 ~ gs }
72 }
73 {
74 __opacity_backend:nnn {#1} { fill } { ca }
75 __opacity_backend:nnn {#1} { stroke } { ca }
76 }
77 }
78 \cs_gset_protected:Npe __opacity_backend_end:
79 {
80 \bool_lazy_any:nTF
81 {
82 { \sys_if_engine_pdftex_p: }

2

83 { \sys_if_engine_luatex_p: }
84 { \sys_if_engine_xetex_p: }
85 }
86 { __opacity_backend_reset: }
87 {
88 __opacity_backend_reset_fill:
89 __opacity_backend_reset_stroke:
90 }
91 }
92 }

1.3 Extra variants
93 \cs_generate_variant:Nn \clist_set:Nn { cv }
94 \cs_generate_variant:Nn \hook_gput_code:nnn { nne }
95 \exp_args_generate:n { nVv }
96 \cs_generate_variant:Nn \color_select:n { V }
97 \cs_generate_variant:Nn \dim_compare:nNnTF { v }
98 \cs_generate_variant:Nn \dim_compare_p:nNn { vNv }
99 \cs_generate_variant:Nn \dim_max:nn { v }

100 \cs_generate_variant:Nn \str_replace_all:Nnn { NnV }
101 \cs_generate_variant:Nn \text_purify:n { v }
102 \cs_generate_variant:Nn \vbox_to_ht:nn { v }

1.4 Scratch space
__talk_tmp:w For one-off processing.

103 \cs_new_protected:Npn __talk_tmp:w { }

(End of definition for __talk_tmp:w.)

\l__talk_tmp_box

104 \box_new:N \l__talk_tmp_box

(End of definition for \l__talk_tmp_box.)

\l__talk_tmp_tl

105 \tl_new:N \l__talk_tmp_tl

(End of definition for \l__talk_tmp_tl.)

1.5 Option handling
\l__talk_aspect_ratio_str

\l__talk_fontsize_dim
\l__talk_frame_title_bool

\l__talk_mode_str

106 \keys_define:nn { talk }
107 {
108 aspect-ratio .str_set:N =
109 \l__talk_aspect_ratio_str ,
110 font-size .dim_set:N =
111 \l__talk_fontsize_dim ,
112 frame-title-arg .bool_set:N =
113 \l__talk_frame_title_bool ,
114 handout .code:n =
115 { \str_set:Nn \l__talk_mode_str { handout } } ,
116 handout .value_forbidden:n = true ,

3

117 mode .choices:nn =
118 { handout , projector }
119 { \str_set:NV \l__talk_mode_str \l_keys_choice_tl }
120 }

(End of definition for \l__talk_aspect_ratio_str and others.)
Scope for options.

121 \keys_define:nn { talk }
122 {
123 aspect-ratio .usage:n = load ,
124 font-size .usage:n = load ,
125 frame-title-arg .usage:n = load ,
126 mode .usage:n = load
127 }

Initial values.
128 \keys_set:nn { talk }
129 {
130 aspect-ratio = 16:9 ,
131 font-size = 11pt ,
132 frame-title-arg = false ,
133 mode = projector
134 }

135 \ProcessKeyOptions [talk]

1.6 Setting up
Load the font size setup if available, otherwise fall back on scaling.
136 \file_if_exist_input:nF { size \dim_to_decimal:n \l__talk_fontsize_dim .clo }
137 {
138 \file_input:n { size10.clo }
139 \RequirePackage { relsize }
140 \hook_gput_code:nne { begindocument } { talk }
141 { \exp_not:N \relsize { \fp_eval:n { \l__talk_fontsize_dim / 10pt } } }
142 }

\c__talk_paper_height_dim
\c__talk_paper_width_dim

As geometry is being used to set the paper size with no previous value, we have to use
the optional argument rather than waiting to apply \geometry.
143 \dim_const:Nn \c__talk_paper_height_dim { 100mm }
144 \use:e
145 {
146 \cs_set_protected:Npn \exp_not:N __talk_tmp:w
147 #1 \tl_to_str:n { : } #2 \tl_to_str:n { : } #3 \exp_not:N \q_stop
148 {
149 \dim_const:Nn \exp_not:N \c__talk_paper_width_dim
150 {
151 \exp_not:N \fp_to_dim:n
152 { (#1 / #2) * \exp_not:N \c__talk_paper_height_dim }
153 }
154 }
155 \exp_not:N __talk_tmp:w \l__talk_aspect_ratio_str
156 \tl_to_str:n { : } 100 \exp_not:N \q_stop
157 }

4

158 \use:e
159 {
160 \exp_not:N \RequirePackage
161 [
162 papersize =
163 {
164 \dim_use:N \c__talk_paper_width_dim ,
165 \dim_use:N \c__talk_paper_height_dim
166 } ,
167 tmargin = 10mm ,
168 bmargin = 8mm ,
169 lmargin = 10mm ,
170 rmargin = 10mm ,
171 headheight = 10mm ,
172 headsep = 2mm ,
173 footskip = 6mm
174]
175 { geometry }
176 }

(End of definition for \c__talk_paper_height_dim and \c__talk_paper_width_dim.)
Turn off justification

177 \raggedright

1.7 Math support
We always require amsmath: this is forced anyway by unicode-math for LuaTEX.
178 \RequirePackage { amsmath }

1.8 Font selection
The aim here is to minimize change from the standard font setup but at the same time
provide a sans-serif default. Since beamer was released, better sans-serif math mode fonts
have become available. For OpenType engines,requiring (lua-)unicode-math is the most
sensible approach; we also load mathtools as that has to be before unicode-math. The
New Computer Modern font provides a reasonable initial set of glyphs. It comes with
a wrapper package, but that does various other things: if the user wants these, they
can choose to load themselves. For 8-bit engines, switching the text font to be sans-serif
is easy. For math mode, the sansmathfonts package does a good job: here, using the
package rather than adjusting directly is the sensible option.
179 \sys_if_engine_opentype:TF
180 {
181 \RequirePackage { fontspec }
182 \RequirePackage { mathtools }
183 \sys_if_engine_luatex:TF
184 {
185 \RequirePackage { lua-unicode-math }
186 \tagpdfsetup { math / mathml / luamml / load = true }
187 }
188 { \RequirePackage { unicode-math } }
189 \setmainfont { NewCMSans10-Regular.otf }
190 \setsansfont { NewCMSans10-Regular.otf }

5

191 \setmathfont { NewCMSansMath-Regular.otf }
192 }
193 {
194 \RequirePackage { sansmathfonts }
195 \RequirePackage [nomath] { lmodern }
196 \cs_set_eq:NN \rmdefault \sfdefault
197 }

To ensure that math mode fonts are always initialized, force loading at the start
of the document. This is left as late as possible: just before typesetting starts. This is
needed to set up math dimensions for vertical centering.
198 \AddToHook { begindocument / end } { \check@mathfonts }

1.9 Hyperlinks
\thepage We define \thepage here: this is checked for by hyperref so has to come early.

199 \cs_new:Npn \thepage { \@arabic \c@page }

(End of definition for \thepage. This variable is documented on page ??.)
A requirement.

200 \RequirePackage { hyperref }
201 \hypersetup { hidelinks }

1.10 Tagging
We need to extend the standard tagging model to work with slides and so on.
202 \tagpdfsetup
203 {
204 role / user-NS = ltx-talk ,
205 role / new-tag = frame / Sect ,
206 role / new-tag = frametitle / H4
207 }

208 〈/class〉

6

Part II

ltx-talk-color – Color definitions
1 ltx-talk-color implementation
Start the DocStrip guards.

1 〈∗class〉
Identify the internal prefix.

2 〈@@=talk〉
The aim here is to test how well l3color can support the range of color functions that

are needed for a presentation. As such, this is very much experimental, but deliberately
so. In particular, there is an important question about the need for global colors: used
throughout beamer but otherwise not widely encountered. At the same time, there is a
need to work with packages that expect color to be managed in a predictable way: pgf
in particular makes use of xcolor internal as part of color management.

Currently, colors defined using xcolor will be passed on to l3color provided \DocumentMetadata
is active. As that is a requirement in any case for ltx-talk, some of the setup is relatively
easy to do.

1.1 Existing definitions
3 \RequirePackage { xcolor }

\stdcolor
\stdmathcolor
\stdtextcolor

Save the document commands.
4 \NewCommandCopy \stdcolor \color
5 \NewCommandCopy \stdmathcolor \mathcolor
6 \NewCommandCopy \stdtextcolor \textcolor

(End of definition for \stdcolor , \stdmathcolor , and \stdtextcolor. These functions are documented
on page ??.)

1.2 Document (and interface) commands
7 \cs_generate_variant:Nn \color_select:n { e }
8 \cs_generate_variant:Nn \color_select:nn { ne }
9 \cs_generate_variant:Nn \color_math:nn { e }

10 \cs_generate_variant:Nn \color_math:nnn { ne }

\color
\mathcolor
\textcolor

Add the overlay specification and use l3color.
11 \RenewDocumentCommand \color { D <> { all } o m }
12 {
13 __talk_if_overlay:nT {#1}
14 {
15 \IfNoValueTF {#2}
16 { \color_select:e {#3} }
17 { \color_select:ne {#2} {#3} }
18 }
19 \ignorespaces
20 }
21 \RenewDocumentCommand \mathcolor { D <> { all } o m +m }
22 {

7

23 __talk_if_overlay:nT {#1}
24 {
25 \IfNoValueTF {#2}
26 { \color_math:en {#3} {#4} }
27 { \color_math:nen {#2} {#3} {#4} }
28 }
29 }
30 \RenewDocumentCommand \textcolor { D <> { all } o m +m }
31 {
32 __talk_if_overlay:nT {#1}
33 {
34 \mode_leave_vertical:
35 \group_begin:
36 \IfNoValueTF {#2}
37 { \color_select:e {#3} }
38 { \color_select:ne {#2} {#3} }
39 #4
40 \group_end:
41 }
42 }

(End of definition for \color , \mathcolor , and \textcolor. These functions are documented on page
??.)

\pagecolor
__talk_pagecolor:n

Here, the definition is different: we directly use the shipout hook.
43 \RenewDocumentCommand \pagecolor { D <> { all } o m }
44 {
45 __talk_if_overlay:nT {#1}
46 {
47 \IfNoValueTF {#2}
48 { __talk_pagecolor:n { {#3} } }
49 { __talk_pagecolor:n { [{#2}] {#3} } }
50 }
51 }
52 \cs_new_protected:Npn __talk_pagecolor:n #1
53 {
54 \AddToHook { shipout / background }
55 {
56 \color #1
57 \put (0cm, -\paperheight)
58 { \rule { \paperwidth } { \paperheight } }
59 }
60 }

(End of definition for \pagecolor and __talk_pagecolor:n. This function is documented on page ??.)

\set@color Part of code-level interface for color: simply use the expl3 version of the same idea.
61 \cs_set_eq:NN \set@color \color_ensure_current:

(End of definition for \set@color. This function is documented on page ??.)

8

1.3 Color definition
\DeclareColor Provide a single interface here: as the data will be passed to l3color in any case, there is

not too much to do.
62 \NewDocumentCommand \DeclareColor { m o m }
63 {
64 \IfNoValueTF {#2}
65 { \colorlet {#1} {#3} }
66 { \definecolor {#1} {#2} {#3} }
67 }

(End of definition for \DeclareColor. This function is documented on page ??.)

1.4 Semantic colors
Pick up the standard colors from beamer.

68 \DeclareColor { alert } [RGB] { 200 , 0 , 0 }
69 \DeclareColor { example } { green!50!black }
70 \DeclareColor { structure } [rgb] { 0.2 , 0.2 , 0.7 }

71 〈/class〉

9

Part III

ltx-talk-decode – Decoding overlay
specs
1 ltx-talk-decode implementation
Start the DocStrip guards.

1 〈∗class〉
Identify the internal prefix.

2 〈@@=talk〉

\l__talk_decode_overlays_bool The result from decoding: are we on the current slide. This may well be better handled
by moving to a TF signature: to be explored.

3 \bool_new:N \l__talk_decode_overlays_bool

(End of definition for \l__talk_decode_overlays_bool.)

\g__talk_pauses_int
\c@pauses
\thepauses

The automatically-incremented value for the relative overlay value.
4 \int_new:N \g__talk_pauses_int
5 \cs_new_eq:NN \c@pauses \g__talk_pauses_int
6 \cs_new:Npn \thepauses { \@arabic \g__talk_pauses_int }

(End of definition for \g__talk_pauses_int , \c@pauses , and \thepauses. These variables are docu-
mented on page ??.)

\l__talk_decode_pure_bool Tracks whether only mode specifications were given.
7 \bool_new:N \l__talk_decode_pure_bool

(End of definition for \l__talk_decode_pure_bool.)

\l__talk_decode_step_bool Tracks whether to step \g__talk_pauses_int.
8 \bool_new:N \l__talk_decode_step_bool

(End of definition for \l__talk_decode_step_bool.)

\l__talk_decode_arg_str For error usage.
9 \str_new:N \l__talk_decode_arg_str

(End of definition for \l__talk_decode_arg_str.)

\l__talk_decode_overlays_clist
\l__talk_decode_overlays_str

The decoded overlay specification: will have only absolute slide numbers present, poten-
tially along with ranges.

10 \clist_new:N \l__talk_decode_overlays_clist
11 \str_new:N \l__talk_decode_overlays_str

(End of definition for \l__talk_decode_overlays_clist and \l__talk_decode_overlays_str.)

\l__talk_decode_action_str The action which is active, if any.
12 \str_new:N \l__talk_decode_action_str

(End of definition for \l__talk_decode_action_str.)

10

\l__talk_decode_actions_bool
\l__talk_decode_actions_clist

\l__talk_decode_actions_str

For the actions versions of overlay tracking.
13 \bool_new:N \l__talk_decode_actions_bool
14 \clist_new:N \l__talk_decode_actions_clist
15 \str_new:N \l__talk_decode_actions_str

(End of definition for \l__talk_decode_actions_bool , \l__talk_decode_actions_clist , and \l__-
talk_decode_actions_str.)

__talk_decode_parse:n
__talk_decode_parse_auxi:n
__talk_decode_parse_auxii:n

__talk_decode_parse:w

First a simple check for an entirely blank argument: if that’s the case, there is no addi-
tional overlay to consider. Then deal with any category code issues before looping over
blocks divided by | tokens.

16 \cs_new_protected:Npn __talk_decode_parse:n #1
17 { \exp_args:Ne __talk_decode_parse_auxi:n {#1} }
18 \cs_new_protected:Npn __talk_decode_parse_auxi:n #1
19 {
20 \str_clear:N \l__talk_decode_action_str
21 \bool_lazy_or:nnTF
22 { \tl_if_blank_p:n {#1} }
23 { \str_if_eq_p:nn {#1} { all } }
24 { \bool_set_true:N \l__talk_decode_overlays_bool }
25 {
26 \str_set:Nn \l__talk_decode_arg_str {#1}
27 \bool_set_false:N \l__talk_decode_actions_bool
28 \bool_set_false:N \l__talk_decode_overlays_bool
29 \bool_set_true:N \l__talk_decode_pure_bool
30 \str_clear:N \l__talk_decode_overlays_str
31 \str_clear:N \l__talk_decode_actions_str
32 \exp_args:No __talk_decode_parse_auxii:n { \l__talk_decode_arg_str }
33 }
34 }
35 \cs_new_protected:Npn __talk_decode_parse_auxii:n #1
36 { __talk_decode_parse:w #1 | \q_recursion_tail | \q_recursion_stop }

The end-of-loop test here covers the case where the active mode is not mentioned at all
in the specification.

37 \cs_new_protected:Npn __talk_decode_parse:w #1 |
38 {
39 \quark_if_recursion_tail_stop_do:nn {#1}
40 {
41 \bool_lazy_and:nnT
42 { \str_if_empty_p:N \l__talk_decode_overlays_str }
43 { ! \l__talk_decode_pure_bool }
44 { \bool_set_true:N \l__talk_decode_overlays_bool }
45 }
46 \exp_args:Ne __talk_decode_mode:n
47 { \tl_trim_spaces:n {#1} }
48 __talk_decode_parse:w
49 }

(End of definition for __talk_decode_parse:n and others.)

\c__talk_modes_clist The possible modes: detokenized as that is applied up-front in decoding.
50 \clist_const:Ne \c__talk_modes_clist
51 {

11

52 \tl_to_str:n { handout } ,
53 \tl_to_str:n { projector }
54 }

(End of definition for \c__talk_modes_clist.)

__talk_decode_mode:n
__talk_decode_mode:w

__talk_decode_mode_aux:n

Check if the mode is known and current. If we find an action but have no overlay details,
they are filled in with a *.

55 \cs_new_protected:Npe __talk_decode_mode:n #1
56 {
57 \clist_if_in:NnTF \exp_not:N \c__talk_modes_clist {#1}
58 {
59 \exp_not:N \str_if_eq:VnT
60 \exp_not:N \l__talk_mode_str {#1}
61 { \bool_set_true:N \exp_not:N \l__talk_decode_overlays_bool }
62 }
63 {
64 \exp_not:N __talk_decode_mode:w #1 \tl_to_str:n { : : }
65 \exp_not:N \q_stop
66 }
67 }
68 \use:e
69 {
70 \cs_new_protected:Npe \exp_not:N __talk_decode_mode:w
71 #1 \token_to_str:N :
72 #2 \token_to_str:N :
73 #3 \exp_not:N \q_stop
74 }
75 {
76 \exp_not:N \tl_if_blank:nTF {#2}
77 {
78 \exp_not:N __talk_decode_mode:nn
79 { \tl_to_str:n { projector } } {#1}
80 }
81 { \exp_not:N __talk_decode_mode:nn {#1} {#2} }
82 }
83 \cs_new_protected:Npn __talk_decode_mode:nn #1#2
84 {
85 \str_if_eq:VnTF \l__talk_mode_str {#1}
86 {
87 __talk_decode_action:n {#2}
88 \str_if_empty:NT \l__talk_decode_overlays_str
89 { __talk_decode_overlays:nn { overlays } { * } }
90 }
91 {
92 \tl_if_blank:nF {#2}
93 { \bool_set_false:N \l__talk_decode_pure_bool }
94 }
95 }

(End of definition for __talk_decode_mode:n , __talk_decode_mode:w , and __talk_decode_mode_-
aux:n.)

__talk_decode_action:n
__talk_decode_action:w

Here, we have two valid possibilities: no action specification at all, or from the known
list. If we don’t find one of those outcomes, we can issue an error.

12

96 \cs_new_protected:Npe __talk_decode_action:n #1
97 {
98 \exp_not:N __talk_decode_action:w
99 #1 \tl_to_str:n { @ @ } \exp_not:N \q_stop

100 }
101 \use:e
102 {
103 \cs_new_protected:Npn \exp_not:N __talk_decode_action:w
104 #1 \tl_to_str:n { @ } #2 \tl_to_str:n { @ } #3 \exp_not:N \q_stop
105 }
106 {
107 \tl_if_blank:nTF {#2}
108 { __talk_decode_overlays:nn { overlays } {#1} }
109 {
110 \cs_if_exist:cTF { __talk_action_ #1 :N }
111 {
112 \bool_set_false:N \l__talk_decode_pure_bool
113 \str_set:Nn \l__talk_decode_action_str {#1}
114 \tl_if_blank:nF {#2}
115 { __talk_decode_overlays:nn { actions } {#2} }
116 }
117 {
118 \msg_error:nnV { talk } { bad-action-spec }
119 \l__talk_decode_arg_str
120 }
121 }
122 }

(End of definition for __talk_decode_action:n and __talk_decode_action:w.)

__talk_decode_overlays:nn
__talk_decode_overlays:nN

\@_decode_overlay_+:nw
__talk_decode_overlay_.:nw

__talk_decode_overlay_aux:nNN
__talk_decode_overlay_offset:nNnN
__talk_decode_overlay_offset:nNn

The loop here needs to replace all + and . characters by the current automatic value,
allowing for any offsets. This step also needs to track whether to increment the automatic
value: true if a + is seen, false otherwise. If the amsmath \ifmeasuring@ flag is on, the
overlay counter is not advanced.
123 \cs_new_protected:Npn __talk_decode_overlays:nn #1#2
124 {
125 \bool_set_false:N \l__talk_decode_step_bool
126 __talk_decode_overlays:nN {#1} #2 \q_recursion_tail \q_recursion_stop
127 \bool_if:NT \l__talk_decode_step_bool
128 {
129 \legacy_if:nF { measuring@ }
130 { \int_gincr:N \g__talk_pauses_int }
131 }
132 __talk_decode_check:n {#1}
133 }
134 \cs_new_protected:Npn __talk_decode_overlays:nN #1#2
135 {
136 \quark_if_recursion_tail_stop:N #2
137 \cs_if_exist_use:cF { __talk_decode_overlay_ #2 :nw }
138 {
139 \str_put_right:cn { l__talk_decode_ #1 _str } {#2}
140 __talk_decode_overlays:nN
141 }
142 {#1}

13

143 }
144 \cs_new_protected:cpn { __talk_decode_overlay_+:nw } #1
145 {
146 \bool_set_true:N \l__talk_decode_step_bool
147 __talk_decode_overlay_aux:nNN {#1} 1
148 }
149 \cs_new_protected:cpn { __talk_decode_overlay_.:nw } #1
150 { __talk_decode_overlay_aux:nNN {#1} 0 }

The look-ahead for an offset to a relative specification. If the end-of-loop is reached,
the value still needs to be inserted: to share auxiliaries, that is done by using the same
function as elsewhere, so the end-of-loop markers are re-inserted. Otherwise, there is a
check to see if the next token is a (.
151 \cs_new_protected:Npn __talk_decode_overlay_aux:nNN #1#2#3
152 {
153 \quark_if_recursion_tail_stop_do:Nn #3
154 {
155 __talk_decode_overlay_offset:nNn {#1} #2 { 0 }
156 \q_recursion_tail \q_recursion_stop
157 }
158 \token_if_eq_meaning:NNTF #3 (%)
159 { __talk_decode_overlay_offset:nNnN {#1} #2 { } }
160 { __talk_decode_overlay_offset:nNn {#1} #2 { 0 } #3 }
161 }

For the end of an offset, any valid overlay specification must have a closing), so this time
the end-of-loop case is an error. Otherwise simply collect up tokens until the closing) is
found.
162 \cs_new_protected:Npn __talk_decode_overlay_offset:nNnN #1#2#3#4
163 {
164 \quark_if_recursion_tail_stop_do:Nn #4
165 {
166 \msg_error:nnV { talk } { bad-action-spec }
167 \l__talk_decode_arg_str
168 } % (
169 \token_if_eq_meaning:NNTF #4)
170 { __talk_decode_overlay_offset:nNn {#1} #2 {#3} }
171 { __talk_decode_overlay_offset:nNnN {#1} #2 {#3#4} }
172 }

Overlay values can never be negative: this is enforced here.
173 \cs_new_protected:Npn __talk_decode_overlay_offset:nNn #1#2#3
174 {
175 \str_put_right:ce { l__talk_decode_ #1 _str }
176 { \int_max:nn { 0 } { #3 + \g__talk_pauses_int + #2 } }
177 __talk_decode_overlays:nN {#1}
178 }

(End of definition for __talk_decode_overlays:nn and others. This function is documented on page
??.)

__talk_decode_check:n
__talk_decode_check:nw

__talk_decode_check_single:nn
__talk_decode_check_range:nnn

At this stage we have a fully “written out” overlay specification, and need to work out if
the current slide is included. We need to look at each entry in the comma-separated list
to sort this out. First we filter out the case of a *, then it’s a question of working out

14

whether each entry is a single number or a range, and if the latter, whether it’s open at
either the start or the end.
179 \cs_new_protected:Npn __talk_decode_check:n #1
180 {
181 \clist_set:cv { l__talk_decode_ #1 _clist } { l__talk_decode_ #1 _str }
182 \clist_if_in:cnTF { l__talk_decode_ #1 _clist } { * }
183 { \bool_set_true:c { l__talk_decode_ #1 _bool } }
184 {
185 \clist_map_inline:cn { l__talk_decode_ #1 _clist }
186 { __talk_decode_check:nw {#1} 0 ##1 - - \q_stop }
187 }
188 }

If #4 is empty, both of the “filler” - tokens were consumed: we have a single value.
Otherwise there is a range: the setup above ensures that there will be a starting value in
all cases due to the leading 0, but there may not be an end one.
189 \cs_new_protected:Npn __talk_decode_check:nw #1#2 - #3 - #4 \q_stop
190 {
191 \tl_if_empty:nTF {#4}
192 { __talk_decode_check_single:nn {#1} {#2} }
193 {
194 \tl_if_blank:nTF {#3}
195 { __talk_decode_check_range:nnn {#1} {#2} { \c_max_int } }
196 { __talk_decode_check_range:nnn {#1} {#2} {#3} }
197 }
198 }
199 \cs_new_protected:Npn __talk_decode_check_single:nn #1#2
200 {
201 \int_compare:nNnTF \g__talk_slide_int = {#2}
202 { \bool_set_true:c { l__talk_decode_ #1 _bool } }
203 {
204 \int_compare:nNnT {#2} > \g__talk_slide_int
205 { \bool_gset_true:N \g__talk_slide_continue_bool }
206 }
207 }

TODO: In the following we might want to add a check whether the range was given with
#2 being smaller than #3, to be decided upon.
208 \cs_set_protected:Npn __talk_decode_check_range:nnn #1#2#3
209 {
210 \int_compare:nNnF \g__talk_slide_int > {#3}
211 {
212 \int_compare:nNnTF \g__talk_slide_int < {#2}
213 { \bool_gset_true:N \g__talk_slide_continue_bool }
214 {
215 \bool_set_true:c { l__talk_decode_ #1 _bool }
216 \bool_lazy_and:nnT
217 { \int_compare_p:nNn \g__talk_slide_int < {#3} }
218 { \int_compare_p:nNn {#3} < \c_max_int }
219 { \bool_gset_true:N \g__talk_slide_continue_bool }
220 \clist_map_break:
221 }
222 }
223 }

15

(End of definition for __talk_decode_check:n and others.)

224 \msg_new:nnnn { talk } { bad-action-spec }
225 { Bad~overlay~specification~"#1". }
226 {
227 The~overlay~specification~given~doesn't~follow~the~pattern~described~in~
228 the~ltx-talk~manual:~it~has~been~ignored.
229 }

230 〈/class〉

16

Part IV

ltx-talk-frame – The structure of
frames
1 ltx-talk-frame implementation
Start the DocStrip guards.

1 〈∗class〉
Identify the internal prefix.

2 〈@@=talk〉

1.1 Slides in frames
Currently, each slide in a frame will produce a separate page in the output (unless the
slide is suppressed entirely). Material is then hidden on some pages by using opacity. An
alternative approach would be to use Optional Content Groups to have a similar effect on
one page per frame. However, whilst that would be relatively clear for appear/disappear
effects, it would be much less straight-forward for partial transparency, etc., plus would
depend more heavily on viewer support. At a future stage we may wish to revisit this.

\g__talk_slide_continue_bool Tracks whether the frame continues after the current slide.
3 \bool_new:N \g__talk_slide_continue_bool

(End of definition for \g__talk_slide_continue_bool.)

\l__talk_slide_box

4 \box_new:N \l__talk_slide_box

(End of definition for \l__talk_slide_box.)

\g__talk_slide_int
\c@slide

\theslide

The slide number inside the current frame: needed to know which overlays are active.
We also provide LATEX counter-style access.

5 \int_new:N \g__talk_slide_int
6 \cs_new_eq:NN \c@slide \g__talk_slide_int
7 \cs_new:Npn \theslide { \@arabic \c@slide }

(End of definition for \g__talk_slide_int , \c@slide , and \theslide. These variables are documented
on page ??.)

Required to know which is the last slide in a frame for tagging.
8 \property_new:nnnn { slides } { now } { 1 } { \int_use:N \g__talk_slide_int }

__talk_slide:nn
__talk_slide_aux:n

Each slide is parsed inside simple set up, the only complexity being if we are handling
fragile frames. There, all \obeyedline in the grabbed tokens need to be turned back into
^^M before rescanning: this ensures that any verbatim grabbing in the frame still works.
The strange business with setting the continuation boolean is needed as otherwise we get
an infinite loop if there is an overlay specification for the frame itself. Tagging should
not of itself force slide continuation, so the global boolean is reset for the tagged slide.

9 \cs_new_protected:Npn __talk_slide:nn #1#2
10 {

17

11 \group_begin:
12 \tl_set:Ne \l__talk_tmp_tl
13 {
14 \property_ref:ee { frame . \int_use:N \g__talk_frame_int }
15 { slides }
16 }
17 \str_if_eq:VnTF \l__talk_frame_tagging_str { n }
18 { \str_set:NV \l__talk_frame_tagging_str \l__talk_tmp_tl }
19 {
20 \str_replace_all:NnV \l__talk_frame_tagging_str { ,n }
21 \l__talk_tmp_tl
22 \str_replace_all:NnV \l__talk_frame_tagging_str { ,~n }
23 \l__talk_tmp_tl
24 }
25 \int_gzero:N \g__talk_slide_int
26 \RenewCommandCopy \frame __talk_latexe_frame:n
27 \bool_do_while:Nn \g__talk_slide_continue_bool
28 {
29 \int_gincr:N \g__talk_slide_int
30 \bool_gset_false:N \g__talk_slide_continue_bool
31 __talk_if_overlay:nT {#1}
32 {
33 __talk_slide_begin:
34 __talk_if_overlay:VTF \l__talk_frame_tagging_str
35 {
36 \bool_gset_false:N \g__talk_slide_continue_bool
37 __talk_frame_tag:n
38 }
39 {
40 \bool_gset_false:N \g__talk_slide_continue_bool
41 __talk_frame_notag:n
42 }
43 {
44 \bool_if:NTF \l__talk_frame_verb_bool
45 { __talk_slide_aux:n }
46 { \use:n }
47 {#2}
48 }
49 __talk_slide_end:
50 }
51 }
52 \property_record:ee { frame . \int_use:N \g__talk_frame_int }
53 { slides }
54 \group_end:
55 }
56 \cs_new_protected:Npn __talk_slide_aux:n #1
57 {
58 \group_begin:
59 \cs_set:Npn \obeyedline { ^^J }
60 \use:e
61 {
62 \group_end:
63 \tl_retokenize:n {#1}
64 }

18

65 }

(End of definition for __talk_slide:nn and __talk_slide_aux:n.)
The very last frame will not be recorded by the above, so we have to add to the hook

at the very end of the run.
66 \AddToHook { enddocument / afterlastpage }
67 {
68 \property_record:ee { frame . \int_use:N \g__talk_frame_int }
69 { slides }
70 }

\g__talk_frame_struct_int The tagging structure number for the slide: needed by the content placed outside of the
current box (for example the frame title).

71 \int_new:N \g__talk_frame_struct_int

(End of definition for \g__talk_frame_struct_int.)

__talk_slide_begin:
__talk_slide_end: 72 \cs_new_protected:Npn __talk_slide_begin:

73 {
74 \int_gzero:N \g__talk_pauses_int
75 \tl_gclear:N \g__talk_frame_title_tl
76 \tl_gclear:N \g__talk_frame_subtitle_tl
77 __talk_cnt_save:
78 \vbox_set:Nw \l__talk_slide_box
79 \tl_gclear:N \g__talk_onslide_tl
80 }
81 \cs_new_protected:Npn __talk_slide_end:
82 {
83 \tl_use:N \g__talk_onslide_tl
84 \vbox_set_end:
85 \bool_if:NT \g__talk_slide_continue_bool
86 { __talk_cnt_restore: }
87 \vbox_to_ht:nn { \textheight }
88 {
89 \use:c { __talk_slide_align_ \l__talk_frame_alignment_tl :n }
90 { \vbox_unpack_drop:N \l__talk_slide_box }
91 }
92 \clearpage
93 }

(End of definition for __talk_slide_begin: and __talk_slide_end:.)

__talk_slide_align_bottom:n
__talk_slide_align_center:n

__talk_slide_align_stretch:n
__talk_slide_align_top:n

A pretty standard abstraction: we make sure there are always two skips.
94 \cs_new_protected:Npn __talk_slide_align_bottom:n #1
95 {
96 \skip_vertical:n { 0pt~plus~1fil }
97 #1
98 \skip_vertical:n { 0pt }
99 }

100 \cs_new_protected:Npn __talk_slide_align_center:n #1
101 {
102 \skip_vertical:n { 0pt~plus~0.5fil }
103 #1

19

104 \skip_vertical:n { 0pt~plus~0.5fil }
105 }
106 \cs_new_protected:Npn __talk_slide_align_stretch:n #1
107 {
108 \skip_vertical:n { 0pt }
109 #1
110 \skip_vertical:n { 0pt }
111 }
112 \cs_new_protected:Npn __talk_slide_align_top:n #1
113 {
114 \skip_vertical:n { 0pt }
115 #1
116 \skip_vertical:n { 0pt~plus~1fil }
117 }

(End of definition for __talk_slide_align_bottom:n and others.)

1.2 Counters
\l__talk_cnt_reset_seq As \stepcounter, etc., will increment at each overlay, there is a need to save and reset.

The list will be finalized at the end of the preamble, so the data storage is created at that
point. The starting point is counters created before the class is loaded (other than those
for lists, which reset “naturally”). Other cases are handled by adding to \newcounter.
118 \seq_new:N \l__talk_cnt_reset_seq
119 \seq_set_from_clist:Nn \l__talk_cnt_reset_seq
120 {
121 equation ,
122 footnote ,
123 mpfootnote ,
124 parentequation
125 }
126 \seq_map_inline:Nn \l__talk_cnt_reset_seq
127 {
128 \int_new:c { g__talk_saved_ #1 _int }
129 \int_gset_eq:cc { g__talk_saved_ #1 _int } { c@ #1 }
130 }

(End of definition for \l__talk_cnt_reset_seq.)

__talk_cnt_save:
__talk_cnt_restore:

A simple save-and-restore pair.
131 \cs_new_protected:Npn __talk_cnt_save:
132 {
133 \seq_map_inline:Nn \l__talk_cnt_reset_seq
134 { \int_gset_eq:cc { g__talk_saved_ ##1 _int } { c@ ##1 } }
135 }
136 \cs_new_protected:Npn __talk_cnt_restore:
137 {
138 \seq_map_inline:Nn \l__talk_cnt_reset_seq
139 { \int_gset_eq:cc { c@ ##1 } { g__talk_saved_ ##1 _int } }
140 }

(End of definition for __talk_cnt_save: and __talk_cnt_restore:.)

20

\@definecounter
\std@definecounter

Track all counters for resetting.
141 \cs_new_eq:NN \std@definecounter \@definecounter
142 \cs_gset_protected:Npn \@definecounter #1
143 {
144 \std@definecounter {#1}
145 \int_new:c { g__talk_saved_ #1 _int }
146 \seq_gput_right:Nn \l__talk_cnt_reset_seq {#1}
147 }

(End of definition for \@definecounter and \std@definecounter. These functions are documented on
page ??.)

1.3 Frame options
\l__talk_frame_alignment_tl

148 \tl_new:N \l__talk_frame_alignment_tl

(End of definition for \l__talk_frame_alignment_tl.)

\l__talk_action_spec_str
\l__talk_frame_tagging_str 149 \keys_define:nn { talk / frame }

150 {
151 action-spec .str_set:N
152 = \l__talk_action_spec_str ,
153 tag-slides .str_set:N
154 = \l__talk_frame_tagging_str ,
155 vertical-alignment .choices:nn =
156 { bottom , center , stretch , top }
157 {
158 \tl_set_eq:NN \l__talk_frame_alignment_tl
159 \l_keys_value_tl
160 }
161 }
162 \keys_set:nn { talk / frame }
163 {
164 action-spec = ,
165 tag-slides = n ,
166 vertical-alignment = center
167 }

(End of definition for \l__talk_action_spec_str and \l__talk_frame_tagging_str.)

1.4 Tagging for headers
__talk_header_tag_begin:n
__talk_header_tag_begin:e

__talk_header_tag_end:

Generalized control for inserting material into the header area (which is otherwise outside
of tagging).
168 \cs_new_protected:Npn __talk_header_tag_begin:n #1
169 {
170 \tag_resume:n { header }
171 \tag_mc_end:
172 \tag_struct_begin:n {#1}
173 \tag_mc_begin:n { }
174 }
175 \cs_generate_variant:Nn __talk_header_tag_begin:n { e }

21

176 \cs_new_protected:Npn __talk_header_tag_end:
177 {
178 \tag_mc_end:
179 \tag_struct_end:
180 \tag_mc_begin:n { artifact }
181 \tag_suspend:n { header }
182 }

(End of definition for __talk_header_tag_begin:n and __talk_header_tag_end:.)

1.5 Wallpaper
\l__talk_footelem_left_skip
\l__talk_footelem_right_skip
\l__talk_footelem_color_tl
\l__talk_footelem_font_tl

183 \NewTemplateType { footer-element } { 1 }
184 \DeclareTemplateInterface { footer-element } { talk } { 1 }
185 {
186 color : tokenlist ,
187 font : tokenlist = ,
188 left-hspace : length = 0em ,
189 right-hspace : length = 0em
190 }
191 \DeclareTemplateCode { footer-element } { talk } { 1 }
192 {
193 color = \l__talk_footelem_color_tl ,
194 font = \l__talk_footelem_font_tl ,
195 left-hspace = \l__talk_footelem_left_skip ,
196 right-hspace = \l__talk_footelem_right_skip
197 }
198 {
199 \tl_if_empty:nF {#1}
200 {
201 \hspace { \l__talk_footelem_left_skip }
202 \group_begin:
203 \tl_if_empty:NF \l__talk_footelem_color_tl
204 { \color_select:V \l__talk_footelem_color_tl }
205 \l__talk_footelem_font_tl
206 #1
207 \group_end:
208 \hspace { \l__talk_footelem_right_skip }
209 }
210 }
211 \DeclareInstance { footer-element } { date } { talk } { }
212 \DeclareInstance { footer-element } { author } { talk } { }
213 \DeclareInstance { footer-element } { title } { talk } { }
214 \DeclareInstance { footer-element } { subtitle } { talk } { }
215 \DeclareInstance { footer-element } { institute } { talk } { }
216 \DeclareInstance { footer-element } { framenumber } { talk } { }
217 \DeclareInstance { footer-element } { totalframes } { talk } { }

(End of definition for \l__talk_footelem_left_skip and others.)

\l__talk_header_bg_tl
\l__talk_header_fg_tl

\l__talk_header_font_tl
\l__talk_header_ht_dim

\l__talk_header_left_skip
\l__talk_header_frametitle_bool

\l__talk_header_right_skip

Templates for the header area. The background always covers the full width, but the text
area may be narrower. The setup here aims to avoid repeated kerns but also dealing with

22

complex conditionals, hence we always move to the edge of the paper first then adjust as
required.
218 \NewTemplateType { header } { 0 }
219 \DeclareTemplateInterface { header } { talk } { 0 }
220 {
221 background-color : tokenlist,
222 color : tokenlist = structure ,
223 font : tokenlist = \normalfont ,
224 height : length = \Gm@tmargin + \headsep ,
225 left-hspace : skip = \Gm@lmargin ,
226 print-frame-title : boolean = true ,
227 right-hspace : skip = \Gm@rmargin
228 }
229 \DeclareTemplateCode { header } { talk } { 0 }
230 {
231 background-color = \l__talk_header_bg_tl ,
232 color = \l__talk_header_fg_tl ,
233 font = \l__talk_header_font_tl ,
234 height = \l__talk_header_ht_dim ,
235 left-hspace = \l__talk_header_left_skip ,
236 print-frame-title = \l__talk_header_frametitle_bool ,
237 right-hspace = \l__talk_header_right_skip
238 }
239 {
240 \noindent
241 __talk_wallpaper_hrule:Nnn
242 \l__talk_header_bg_tl
243 { \l__talk_header_ht_dim - \headsep }
244 { \headsep }
245 \skip_horizontal:n { \l__talk_header_left_skip }
246 \group_begin:
247 \tl_if_empty:NF \l__talk_header_fg_tl
248 { \color_select:V \l__talk_header_fg_tl }
249 \l__talk_header_font_tl
250 \bool_if:NT \l__talk_header_frametitle_bool
251 {
252 \ExpandArgs { nnV }
253 \UseInstance { frametitle } { header }
254 \g__talk_frame_title_tl
255 }
256 \group_end:
257 }
258 \DeclareInstance { header } { std } { talk } { }
259 \AddToHook { begindocument }
260 {
261 \DeclareInstanceCopy { header } { wallpaper } { std }
262 \EditInstance { header } { wallpaper }
263 { print-frame-title = false }
264 }

(End of definition for \l__talk_header_bg_tl and others.)

\l__talk_footer_bg_tl
\l__talk_footer_fg_tl

\l__talk_footer_font_tl
\l__talk_footer_order_clist

\l__talk_footer_sep_tl
\l__talk_footer_left_skip

\l__talk_footer_right_skip

Templates for the footer area. Again the margins are handled in stages: here we do have
a box for the content so the right skip is used, and we avoid an overfull box by including

23

consideration of the right margin of the page layout.
265 \NewTemplateType { footer } { 0 }
266 \DeclareTemplateInterface { footer } { talk } { 0 }
267 {
268 background-color : tokenlist ,
269 color : tokenlist ,
270 element-order : commalist ,
271 font : tokenlist = \tiny ,
272 left-hspace : length = \Gm@lmargin ,
273 right-hspace : length = \Gm@rmargin ,
274 separator : tokenlist = \hfil
275 }
276 \DeclareTemplateCode { footer } { talk } { 0 }
277 {
278 background-color = \l__talk_footer_bg_tl ,
279 color = \l__talk_footer_fg_tl ,
280 element-order = \l__talk_footer_order_clist ,
281 separator = \l__talk_footer_sep_tl ,
282 font = \l__talk_footer_font_tl ,
283 left-hspace = \l__talk_footer_left_skip ,
284 right-hspace = \l__talk_footer_right_skip
285 }
286 {
287 \noindent
288 __talk_wallpaper_hrule:Nnn
289 \l__talk_footer_bg_tl
290 { \footskip }
291 { \Gm@bmargin - \footskip }
292 \skip_horizontal:n { \l__talk_footer_left_skip }
293 \vbox_set_to_wd:Nnn \l__talk_tmp_box
294 {
295 \paperwidth
296 - \l__talk_footer_left_skip
297 - \l__talk_footer_right_skip
298 }
299 {
300 \tl_if_empty:NF \l__talk_footer_fg_tl
301 { \color_select:V \l__talk_footer_fg_tl }
302 \l__talk_footer_font_tl
303 \clist_pop:NNT \l__talk_footer_order_clist \l__talk_tmp_tl
304 {
305 \ExpandArgs { nVv } \UseInstance { footer-element } \l__talk_tmp_tl
306 { @ __talk_metadata_name:n { \l__talk_tmp_tl } }
307 \clist_map_inline:Nn \l__talk_footer_order_clist
308 {
309 \tl_if_empty:cF { @ __talk_metadata_name:n { ##1 } }
310 {
311 \l__talk_footer_sep_tl
312 \ExpandArgs { nnv }
313 \UseInstance { footer-element } {##1}
314 { @ __talk_metadata_name:n { ##1 } }
315 }
316 }
317 }

24

318 \hfil
319 }
320 \box_use_drop:N \l__talk_tmp_box
321 \skip_horizontal:n { \l__talk_footer_right_skip - \Gm@rmargin }
322 }
323 \DeclareInstance { footer } { std } { talk } { }
324 \AddToHook { begindocument }
325 {
326 \DeclareInstanceCopy { footer } { wallpaper } { std }
327 \EditInstance { footer } { wallpaper }
328 { element-order = }
329 }

(End of definition for \l__talk_footer_bg_tl and others.)

__talk_metadata_name:n A simple auxiliary to shorten metadata names if appropriate. Full expansion is applied
as this avoids any issue with stored names.
330 \cs_new:Npn __talk_metadata_name:n #1
331 {
332 \tl_if_exist:cTF { @ short #1 }
333 { short #1 }
334 {#1}
335 }

(End of definition for __talk_metadata_name:n.)

__talk_wallpaper_hrule:Nnn A simple abstraction for the top and bottom rules on the page.
336 \cs_new_protected:Npn __talk_wallpaper_hrule:Nnn #1#2#3
337 {
338 \skip_horizontal:n { -\Gm@lmargin }
339 \tl_if_empty:NF #1
340 {
341 \group_begin:
342 \color_select:V #1
343 \rule:nnn { \paperwidth } {#2} {#3}
344 \skip_horizontal:n { -\paperwidth }
345 \group_end:
346 }
347 }

(End of definition for __talk_wallpaper_hrule:Nnn.)

\ps@plain
\ps@wallpaper

\ps@talk

Install a standard header and footer template, and redefine the plain one as this will be
used for frames without “wallpaper” which still need core links, etc. We also provide a
version that only shows the visual elements: this is deliberately using the same settings
as the main templates.
348 \cs_set_nopar:Npn \ps@plain
349 {
350 \cs_set_nopar:Npn \@oddhead
351 {
352 \hfil
353 }
354 \cs_set_nopar:Npn \@oddfoot { }
355 \cs_set_eq:NN \@evenhead \@oddhead

25

356 \cs_set_eq:NN \@evenfoot \@oddfoot
357 }
358 \cs_set_nopar:Npn \ps@wallpaper
359 {
360 \cs_set_nopar:Npn \@oddhead
361 {
362 \UseInstance { header } { wallpaper }
363 \hfil
364 }
365 \cs_set_nopar:Npn \@oddfoot
366 {
367 \UseInstance { footer } { wallpaper }
368 \hfil
369 }
370 \cs_set_eq:NN \@evenhead \@oddhead
371 \cs_set_eq:NN \@evenfoot \@oddfoot
372 }
373 \cs_new_nopar:Npn \ps@talk
374 {
375 \cs_set_nopar:Npn \@oddhead
376 {
377 \UseInstance { header } { std }
378 \hfil
379 }
380 \cs_set_nopar:Npn \@oddfoot { \UseInstance { footer } { std } }
381 \cs_set_eq:NN \@evenhead \@oddhead
382 \cs_set_eq:NN \@evenfoot \@oddfoot
383 }
384 \pagestyle { talk }

(End of definition for \ps@plain , \ps@wallpaper , and \ps@talk. These functions are documented on
page ??.)

1.6 The frame environment
\l__talk_frame_bool To track whether we are inside a frame or not.

385 \bool_new:N \l__talk_frame_bool

(End of definition for \l__talk_frame_bool.)

\g__talk_frame_tag_bool To track when a frame is being tagged: mainly needed for the header (and as a result
global).
386 \bool_new:N \g__talk_frame_tag_bool

(End of definition for \g__talk_frame_tag_bool.)

\l__talk_frame_verb_bool Indicates that material was collected verbatim (and thus needs rescanning).
387 \bool_new:N \l__talk_frame_verb_bool

(End of definition for \l__talk_frame_verb_bool.)

\g__talk_frame_int
\c@frame

\theframe
\@framenumber

The overall frame number, including LATEX counter-like access.
388 \int_new:N \g__talk_frame_int
389 \cs_new_eq:NN \c@frame \g__talk_frame_int
390 \cs_new:Npn \theframe { \@arabic \c@frame }
391 \cs_new:Npn \@framenumber { \arabic { frame } }

26

(End of definition for \g__talk_frame_int and others. These variables are documented on page ??.)

\@totalframes The total frames can be handled using the kernel properties.
392 \property_new:nnnn { totalframes } { shipout } { -1 }
393 { \int_use:N \g__talk_frame_int }
394 \AddToHook { enddocument / afterlastpage }
395 { \property_record:nn { lastpage } { totalframes } }
396 \cs_new:Npn \@totalframes { \property_ref:nn { lastpage } { totalframes } }

(End of definition for \@totalframes. This variable is documented on page ??.)

__talk_latexe_frame:n As we will need to re-define \frame but have it available inside frames, a copy is made
here.
397 \NewCommandCopy __talk_latexe_frame:n \frame

(End of definition for __talk_latexe_frame:n.)

__talk_frame_process:nn Here, the frame content is received as the argument.
398 \cs_new_protected:Npn __talk_frame_process:nn #1#2
399 {
400 \int_gincr:N \g__talk_frame_int
401 \bool_set_true:N \l__talk_frame_bool
402 __talk_slide:nn {#1} {#2}
403 }

(End of definition for __talk_frame_process:nn.)

__talk_frame_tag:n Wraps some content in tagging for a frame: we may have multiple of these in one logical
frame, but that is non-standard.
404 \cs_new_protected:Npn __talk_frame_tag:n #1
405 {
406 \tag_struct_begin:n { tag = frame }
407 \int_gset:Nn \g__talk_frame_struct_int { \tag_get:n { struct_num } }
408 \bool_gset_true:N \g__talk_frame_tag_bool
409 #1
410 \tag_struct_end:
411 }

(End of definition for __talk_frame_tag:n.)

__talk_frame_notag:n The alternative: turn off tagging and suppress the function that would tag the frame
title.
412 \cs_new_protected:Npn __talk_frame_notag:n #1
413 {
414 \tag_mc_begin:n { artifact }
415 \tag_suspend:n { frame }
416 \bool_gset_false:N \g__talk_frame_tag_bool
417 #1
418 \par
419 \tag_resume:n { frame }
420 \tag_mc_end:
421 }

(End of definition for __talk_frame_notag:n.)

27

frame
frame*

The definition for the frame and frame* environments: the exact interface at both the
document and code levels is still open.
422 \bool_if:NTF \l__talk_frame_title_bool
423 {
424 \RenewDocumentEnvironment { frame }
425 { D <> { all } = { action-spec } O { } +m +b }
426 {
427 \keys_set:nn { talk / frame } {#2}
428 \bool_set_false:N \l__talk_frame_verb_bool
429 __talk_frame_process:nn {#1} { \frametitle {#3} #4 }
430 }
431 { }
432 \NewDocumentEnvironment { frame* }
433 { D <> { all } = { action-spec } O { } +m c }
434 {
435 \keys_set:nn { talk / frame } {#2}
436 \bool_set_true:N \l__talk_frame_verb_bool
437 \tl_gset:Nn \g__talk_frame_title_tl {#3}
438 \exp_args:Nne __talk_frame_process:nn {#1}
439 { \tl_to_str:n { \frametitle } \exp_not:n { {#3} #4 } }
440 }
441 { }
442 }
443 {
444 \RenewDocumentEnvironment { frame }
445 { !D <> { all } = { action-spec } !O { } +b }
446 {
447 \keys_set:nn { talk / frame } {#2}
448 \bool_set_false:N \l__talk_frame_verb_bool
449 __talk_frame_process:nn {#1} {#3}
450 }
451 { }
452 \NewDocumentEnvironment { frame* }
453 { !D <> { all } = { action-spec } !O { } c }
454 {
455 \keys_set:nn { talk / frame } {#2}
456 \bool_set_true:N \l__talk_frame_verb_bool
457 __talk_frame_process:nn {#1} {#3}
458 }
459 { }
460 }

(End of definition for frame and frame*. These functions are documented on page ??.)

461 〈/class〉

28

Part V

ltx-talk-frame – The structure of
frames
1 ltx-talk-frame-structure implementation
Start the DocStrip guards.

1 〈∗class〉
Identify the internal prefix.

2 〈@@=talk〉

1.1 Columns
3 \keys_define:nn { talk }
4 { columns .inherit:n = talk / column }

\l__talk_columns_wd_tl We store the requested width for columns in a tl as this means that the key value will
make sense even if it depends on the current \textwidth.

5 \keys_define:nn { talk / columns }
6 { width .tl_set:N = \l__talk_columns_wd_tl }
7 \keys_set:nn { talk / columns }
8 { width = \textwidth }

(End of definition for \l__talk_columns_wd_tl.)

columns (env.) Columns are block-like environments so we start and end with a \par to ensure correct
tagging.

9 \NewDocumentEnvironment { columns } { D <> { all } O { } }
10 {
11 __talk_action_begin:n {#1}
12 \par
13 \keys_set:nn { talk / columns } {#2}
14 \hbox_set_to_wd:Nnw \l__talk_tmp_box { \l__talk_columns_wd_tl }
15 \dim_set:Nn \textwidth { \l__talk_columns_wd_tl }
16 \dim_set_eq:NN \columnwidth \textwidth
17 \hfil
18 \ignorespaces
19 }
20 {
21 \unskip
22 \hfil
23 \hbox_set_end:
24 \box_use_drop:N \l__talk_tmp_box
25 \par
26 __talk_action_end:
27 }

29

\l__talk_column_alignment_tl

28 \keys_define:nn { talk / column }
29 {
30 b .meta:n =
31 { vertical-alignment = bottom } ,
32 b .value_forbidden:n = true ,
33 c .meta:n =
34 { vertical-alignment = center } ,
35 c .value_forbidden:n = true ,
36 t .meta:n =
37 { vertical-alignment = top } ,
38 t .value_forbidden:n = true ,
39 vertical-alignment .choices:nn =
40 { bottom , center , top }
41 {
42 \tl_set_eq:NN \l__talk_column_alignment_tl
43 \l_keys_value_tl
44 }
45 }
46 \keys_set:nn { talk / column }
47 {
48 vertical-alignment = center
49 }

(End of definition for \l__talk_column_alignment_tl.)

__talk_column_align_bottom:n
__talk_column_align_center:n

__talk_column_align_top:n

Based on ideas in the highly experimental xbox.
50 \cs_new_protected:Npn __talk_column_align_bottom:n #1
51 { \vbox:n {#1} }
52 \cs_new_protected:Npn __talk_column_align_center:n #1
53 {
54 \vbox:n
55 {
56 \hbox:n
57 {
58 \box_move_down:nn
59 {
60 0.5 \box_ht:N \l__talk_tmp_box
61 - \tex_fontdimen:D 22 ~ \tex_textfont:D 2 ~
62 }
63 { \vbox:n {#1} }
64 }
65 }
66 }
67 \cs_new_protected:Npn __talk_column_align_top:n #1
68 { \vbox_top:n {#1} }

(End of definition for __talk_column_align_bottom:n , __talk_column_align_center:n , and __-
talk_column_align_top:n.)

column (env.) A cut-down version of a minipage: we want to be clear on the semantic meaning. the
action is applied inside the box after starting horizontal mode to avoid spacing issues
when switching whatsits in and out.

69 \NewDocumentEnvironment { column } { D <> { all } O { } m }

30

70 {
71 \par
72 \keys_set:nn { talk / column } {#2}
73 \vbox_set_to_wd:Nnw \l__talk_tmp_box {#3}
74 \dim_set:Nn \textwidth {#3}
75 \dim_set_eq:NN \columnwidth \textwidth
76 \@parboxrestore
77 \leavevmode
78 \raggedright
79 __talk_action_begin:n {#1}
80 \ignorespaces
81 }

The \@ignore here means that any spaces after \end{column} are suppressed by a
\ignorespaces inserted by the kernel. The \par before __talk_action_end: is needed
as the group formed for actions would otherwise trap for example alignment changes.

82 {
83 \par
84 __talk_action_end:
85 \vbox_set_end:
86 \use:c { __talk_column_align_ \l__talk_column_alignment_tl :n }
87 { \vbox_unpack_drop:N \l__talk_tmp_box }
88 \hfil
89 \par
90 \@ignoretrue
91 }

1.2 Floats
Well really “not floats at all” but the idea is clear.

\l__talk_float_alignment_tl We only worry about horizontal alignment here.
92 \tl_new:N \l__talk_float_alignment_tl

(End of definition for \l__talk_float_alignment_tl.)
A bit similar to the current approach to lists: we need a template at the start but

a common function at the end. The float-placement key is at present just there to
allow mopping up of any argument that is given by accident, hence maps to a temporary
variable.

93 \NewTemplateType { floatenv } { 2 }
94 \DeclareTemplateInterface { floatenv } { talk } { 2 }
95 {
96 float-placement : tokenlist ,
97 horizontal-alignment : choice { left , center , right } = left
98 }
99 \DeclareTemplateCode { floatenv } { talk } { 2 }

100 {
101 float-placement = \l__talk_tmp_tl ,
102 horizontal-alignment =
103 {
104 left = \tl_set:Nn \l__talk_float_alignment_tl { flushleft } ,
105 center = \tl_set:Nn \l__talk_float_alignment_tl { center } ,
106 right = \tl_set:Nn \l__talk_float_alignment_tl { flushright }
107 }

31

108 }
109 {
110 \SetTemplateKeys { floatenv } { talk } {#1}
111 \begin { minipage } { \columnwidth }
112 \begin { \l__talk_float_alignment_tl }
113 \cs_set_nopar:Npn \@captype {#2}
114 }
115 \DeclareInstance { floatenv } { std } { talk } { horizontal-alignment = left }

\endfloatenv And the common end function.
116 \cs_new_protected:Npn \endfloatenv
117 {
118 \end { \l__talk_float_alignment_tl }
119 \end { minipage }
120 }

(End of definition for \endfloatenv. This function is documented on page ??.)

figure (env.)
table (env.)

Unlike beamer, we allow for overlays for the environments as a whole.
121 \clist_map_inline:nn { figure , table }
122 {
123 \NewDocumentEnvironment {#1} { D <> { all } = { float-placement } O { } }
124 {
125 __talk_action_begin:n {##1}
126 \UseInstance { floatenv } { std } {##2} {#1}
127 }
128 {
129 \endfloatenv
130 __talk_action_end:
131 }

\c@figure
\thefigure

\c@table
\thetable

\figurename
\tableename

\fnum@figure
\fnum@table

The standard variables needed to make captions work (nothing for list of floats, as at
present those are not offered).
132 \newcounter {#1}
133 \tl_new:c { #1 name }
134 \tl_set:ce { #1 name } { \text_titlecase_first:n {#1} }
135 \tl_new:c { fnum@ #1 }
136 \tl_set:ce { fnum@ #1 }
137 { \exp_not:c { #1 name } \exp_not:N \nobreakspace \exp_not:c { the #1 } }
138 }

(End of definition for \c@figure and others. These variables are documented on page ??.)
The spacing values needed for the standard function.

139 \newlength \abovecaptionskip
140 \newlength \belowcaptionskip
141 \setlength \abovecaptionskip { 7pt }
142 \setlength \belowcaptionskip { 7pt }

\@caption This is a copy of the kernel version of the function, but with writing to the list of whatever
file removed. It is very likely this needs to be reworked as a template, but that will likely
come from the kernel.
143 \cs_set_protected:Npn \@caption #1 [#2] #3
144 {
145 \par

32

146 \begingroup
147 \@parboxrestore
148 \if@minipage \@setminipage \fi
149 \normalsize
150 \@makecaption { \csname fnum@ #1 \endcsname } { \ignorespaces #3 }
151 \par
152 \endgroup
153 }

(End of definition for \@caption. This function is documented on page ??.)

1.3 Footnotes
\@makefntext A copy of the version provided by article: as for \@caption, we likely want a template

here. It’s not at present completely clear what will happen in the kernel (as the footnote
templates currently leave \@makefntext alone).
154 \cs_new_protected:Npn \@makefntext #1
155 {
156 \parindent 1em
157 \noindent
158 \hb@xt@ 1.8em { \hss \@makefnmark }
159 #1
160 }

(End of definition for \@makefntext. This function is documented on page ??.)

161 〈/class〉

33

Part VI

ltx-talk-mode – Modes
1 ltx-talk-mode implementation
Start the DocStrip guards.

1 〈∗class〉
Identify the internal prefix.

2 〈@@=talk〉

__talk_mode:nT A simplified version of \mode: only deal with the argument form, only check the entire
overlay spec as a string.

3 \prg_new_protected_conditional:Npnn __talk_mode:n #1 { T }
4 {
5 \bool_lazy_or:nnTF
6 { \str_if_eq_p:nn {#1} { all } }
7 { \str_if_eq_p:Vn \l__talk_mode_str {#1} }
8 \prg_return_true:
9 \prg_return_false:

10 }

(End of definition for __talk_mode:nT.)

\mode

11 \NewDocumentCommand \mode { D <> { all } +m }
12 { __talk_mode:nT {#1} {#2} }

(End of definition for \mode. This function is documented on page ??.)

13 〈/class〉

34

Part VII

ltx-talk-overlay – Overlays
1 ltx-talk-overlay implementation
Start the DocStrip guards.

1 〈∗class〉
Identify the internal prefix.

2 〈@@=talk〉

1.1 Utilities
__talk_if_overlay:nTF
__talk_if_overlay:VTF
__talk_overlay_arg:n

3 \prg_new_protected_conditional:Npnn __talk_if_overlay:n #1 { T , F , TF }
4 {
5 __talk_decode_parse:n {#1}
6 \bool_if:NTF \l__talk_decode_overlays_bool
7 \prg_return_true:
8 \prg_return_false:
9 }

10 \prg_generate_conditional_variant:Nnn __talk_if_overlay:n { V } { T , F , TF }

A macro processor variant of the check that always results in an N-type bool.
11 \cs_new_protected:Npn __talk_overlay_arg:n #1
12 {
13 __talk_if_overlay:nTF {#1}
14 { \cs_set:Npn \ProcessedArgument { \c_true_bool } }
15 { \cs_set:Npn \ProcessedArgument { \c_false_bool } }
16 }

(End of definition for __talk_if_overlay:nTF and __talk_overlay_arg:n.)

\l__talk_shuffle_skip For tracking.
17 \skip_new:N \l__talk_shuffle_skip

(End of definition for \l__talk_shuffle_skip.)

__talk_shuffle_skip:n As opacity uses whatsits at present, we need to make sure that any spaces come after
them. This is done by “shuffling” the last skip past the opacity.

18 \cs_new_protected:Npn __talk_shuffle_skip:n #1
19 {
20 \skip_set_eq:NN \l__talk_shuffle_skip \tex_lastskip:D
21 \bool_lazy_and:nnTF
22 { ! \skip_if_eq_p:nn \l__talk_shuffle_skip { 0pt } }
23 {
24 \bool_lazy_or_p:nn
25 { \mode_if_horizontal_p: }
26 { \mode_if_vertical_p: }
27 }
28 {
29 \tex_unskip:D

35

30 #1
31 \mode_if_horizontal:TF
32 { \skip_horizontal:n }
33 { \skip_vertical:n }
34 \l__talk_shuffle_skip
35 }
36 {#1}
37 }

(End of definition for __talk_shuffle_skip:n.)

1.2 Opacity utilities
Currently, opacity is applies using whatsits at a low level. That means that to preserve
spacing, we need to insert no-op versions in various places. To do that and get correct
overlays, we need to track the current opacity. At present, this seems very ltx-talk-specific,
so is handled here with a few auxiliaries.

\g__talk_opacity_seq For tracking.
38 \seq_new:N \g__talk_opacity_seq
39 \seq_gpush:Nn \g__talk_opacity_seq { 1 }

(End of definition for \g__talk_opacity_seq.)

__talk_opacity_begin:n
__talk_opacity_end:

Simply tracking wrappers.
40 \cs_new_protected:Npn __talk_opacity_begin:n #1
41 {
42 \seq_gpush:Nn \g__talk_opacity_seq {#1}
43 __talk_shuffle_skip:n { \opacity_begin:n {#1} }
44 }
45 \cs_new_protected:Npn __talk_opacity_end:
46 {
47 __talk_shuffle_skip:n { \opacity_end: }
48 \seq_gpop:NN \g__talk_opacity_seq \l__talk_tmp_tl
49 }

(End of definition for __talk_opacity_begin:n and __talk_opacity_end:.)

__talk_opacity_reapply: Simply tracking wrappers.
50 \cs_new_protected:Npn __talk_opacity_reapply:
51 {
52 \seq_get:NN \g__talk_opacity_seq \l__talk_tmp_tl
53 \exp_args:NV __talk_opacity_begin:n \l__talk_tmp_tl
54 }

(End of definition for __talk_opacity_reapply:.)

36

1.3 Action commands and environments
Commands that can be used as actions all have a common form (with one exception).
The common internal structure is used to enable them to be used as actions by looking
for the name __talk_action_〈name〉:N.

__talk_action_:N
__talk_action__end:N

The fallback action. This is needed for two reasons. First, it ensures that spacing is
correct in terms of whatsits. Second, it deals with the need to keep opacity in-track in
things like lists.

55 \cs_new_protected:Npn __talk_action_:N #1 { __talk_opacity_reapply: }
56 \cs_new_protected:Npn __talk_action__end:N #1 { __talk_opacity_end: }

(End of definition for __talk_action_:N and __talk_action__end:N.)

__talk_action_alert:N At present a color selection.
57 \cs_new_protected:Npn __talk_action_alert:N #1
58 {
59 \bool_if:NTF #1
60 { \color_select:n { alert } }
61 { \color_select:n { . } }
62 }

(End of definition for __talk_action_alert:N.)

__talk_action_invisible:N
__talk_action_invisible_end:N

__talk_action_visible:N
__talk_action_visible_end:N

Simply (un)hide unconditionally, overwriting any previous opacity.
63 \cs_new_protected:Npn __talk_action_invisible:N #1
64 {
65 \bool_if:NTF #1
66 { __talk_opacity_begin:n { 0 } }
67 { __talk_opacity_begin:n { 1 } }
68 }
69 \cs_new_protected:Npn __talk_action_invisible_end:N #1
70 { __talk_opacity_end: }
71 \cs_new_protected:Npn __talk_action_visible:N #1
72 {
73 \bool_if:NTF #1
74 { __talk_opacity_begin:n { 1 } }
75 { __talk_opacity_begin:n { 0 } }
76 }
77 \cs_new_protected:Npn __talk_action_visible_end:N #1
78 { __talk_opacity_end: }

(End of definition for __talk_action_invisible:N and others.)

__talk_action_only:N
__talk_action_only_end:N

Here, we simply throw away the content we do not want: this is done by typesetting in
a disposable box.

79 \cs_new_protected:Npn __talk_action_only:N #1
80 {
81 \bool_if:NF #1
82 { \vbox_set:Nw \l__talk_tmp_box }
83 }
84 \cs_new_protected:Npn __talk_action_only_end:N #1
85 {
86 \bool_if:NF #1
87 { \vbox_set_end: }
88 }

37

(End of definition for __talk_action_only:N and __talk_action_only_end:N.)

\l__talk_uncover_hidden_fp Currently just an on-off, but that will change.
89 \NewTemplateType { hidden } { 0 }
90 \DeclareTemplateInterface { hidden } { talk } { 0 }
91 { opacity : real = 0 }
92 \DeclareTemplateCode { hidden } { talk } { 0 }
93 { opacity = \l__talk_uncover_hidden_fp }
94 { __talk_opacity_begin:n { \l__talk_uncover_hidden_fp } }
95 \DeclareInstance { hidden } { std } { talk } { }

(End of definition for \l__talk_uncover_hidden_fp.)

__talk_action_uncover:N
__talk_action_uncover_end:N

Use the template: we may need to extend that to deal with the end-of-template case
later.

96 \cs_new_protected:Npn __talk_action_uncover:N #1
97 {
98 \bool_if:NTF #1
99 { __talk_opacity_begin:n { 1 } }

100 { \UseInstance { hidden } { std } }
101 }
102 \cs_new_protected:Npn __talk_action_uncover_end:N #1
103 { __talk_opacity_end: }

(End of definition for __talk_action_uncover:N and __talk_action_uncover_end:N.)

\invisible
\uncover
\visible

All generated automatically using the above implementations.
104 \clist_map_inline:nn { invisible , uncover , visible }
105 {
106 \ExpandArgs { cne } \NewDocumentCommand {#1}
107 { > { __talk_overlay_arg:n } D <> { all } +m }
108 {
109 \exp_not:c { __talk_action_ #1 :N } ##1
110 ##2
111 \exp_not:c { __talk_action_ #1 _end:N } ##1
112 }

(End of definition for \invisible , \uncover , and \visible. These functions are documented on page
??.)

invisibleenv (env.)
uncoverenv (env.)
visibleenv (env.)

And the environment versions.
113 \ExpandArgs { nnee } \NewDocumentEnvironment { #1 env }
114 { > { __talk_overlay_arg:n } D <> { all } }
115 { \exp_not:c { __talk_action_ #1 :N } ##1 }
116 { \exp_not:c { __talk_action_ #1 _end:N } ##1 }
117 }

\alert The \alert command requires a group to contain color, so is done separately even though
it still uses basically the same mechanism.
118 \NewDocumentCommand \alert { > { __talk_overlay_arg:n } D <> { all } +m }
119 {
120 \group_begin:
121 __talk_action_alert:N #1
122 #2
123 \group_end:
124 }

38

(End of definition for \alert. This function is documented on page ??.)

alertenv (env.) As does the environment.
125 \NewDocumentEnvironment { alertenv } { > { __talk_overlay_arg:n } D <> { all } }
126 { __talk_action_alert:N #1 }
127 { }

\only This code needs to be done manually as for the command version the content must be
entirely discarded. That can’t work for the environment version, which has to deal with
for example single items in a list (and so cannot be collected up verbatim and must use
a box).
128 \NewDocumentCommand \only { D <> { all } +m }
129 {
130 __talk_if_overlay:nT {#1}
131 {#2}
132 }

(End of definition for \only. This function is documented on page ??.)

onlyenv (env.) The environment version could be done above, but it is clearer to keep this code entirely
separate from the rest.
133 \NewDocumentEnvironment { onlyenv } { > { __talk_overlay_arg:n } D <> { all } }
134 { __talk_action_only:N #1 }
135 { __talk_action_only_end:N #1 }

\l__talk_saved_overlays_bool
\l__talk_saved_action_str

\l__talk_saved_actions_bool
136 \bool_new:N \l__talk_saved_overlays_bool
137 \str_new:N \l__talk_saved_action_str
138 \bool_new:N \l__talk_saved_actions_bool

(End of definition for \l__talk_saved_overlays_bool , \l__talk_saved_action_str , and \l__talk_-
saved_actions_bool.)

\l__talk_overlay_all_bool

139 \bool_new:N \l__talk_overlay_all_bool

(End of definition for \l__talk_overlay_all_bool.)

\actionactionenv (env.)
__talk_action_begin:n

__talk_action_begin_aux:n
__talk_action_end:

As we need data on not just overlays but also actions at the end of the environment, this
has to be done manually. To allow working with environments but also items, the code
needs to save data for the end function. The group is needed for cases where we are not
in a LATEX environment group. When an \onslide/\pause is active, it takes priority:
sorted by applying up-front. Actions can be skipped entirely if the overlay spec is simply
all, as there will never be any spacing issues, etc.
140 \NewDocumentCommand \action { D <> { all } +m }
141 {
142 \group_begin:
143 __talk_action_begin:n {#1}
144 #2
145 __talk_action_end:
146 \group_end:
147 }
148 \NewDocumentEnvironment { actionenv } { D <> { all } }
149 { __talk_action_begin:n {#1} }

39

150 { __talk_action_end: }
151 \cs_new_protected:Npn __talk_action_begin:n #1
152 {
153 \group_begin:
154 \str_if_eq:nnTF {#1} { all }
155 { \bool_set_true:N \l__talk_overlay_all_bool }
156 {
157 \bool_set_false:N \l__talk_overlay_all_bool
158 __talk_action_begin_aux:n {#1}
159 }
160 }
161 \cs_new_protected:Npn __talk_action_begin_aux:n #1
162 {
163 __talk_decode_parse:n {#1}
164 \bool_set_eq:NN \l__talk_saved_overlays_bool
165 \l__talk_decode_overlays_bool
166 \str_set_eq:NN \l__talk_saved_action_str
167 \l__talk_decode_action_str
168 \bool_set_eq:NN \l__talk_saved_actions_bool
169 \l__talk_decode_actions_bool
170 \tl_if_empty:NTF \g__talk_onslide_tl
171 {
172 \bool_if:NTF \l__talk_decode_overlays_bool
173 {
174 \use:c { __talk_action_ \l__talk_decode_action_str :N }
175 \l__talk_decode_actions_bool
176 }
177 { \UseInstance { hidden } { std } }
178 }
179 { __talk_action_invisible:N \c_true_bool }
180 }
181 \cs_new_protected:Npn __talk_action_end:
182 {
183 \bool_if:NF \l__talk_overlay_all_bool
184 {
185 \bool_if:NTF \l__talk_saved_overlays_bool
186 {
187 \cs_if_exist_use:cF
188 { __talk_action_ \l__talk_saved_action_str _end:N }
189 { \use_none:n }
190 \l__talk_saved_actions_bool
191 }
192 { __talk_opacity_end: }
193 }
194 \group_end:
195 }

(End of definition for \action and others. This function is documented on page ??.)

1.4 Non-action commands and environments
This section contains commands and environments that do not need to be made available
as actions.

40

\alt Simple wrappers around the internal switch.
196 \NewDocumentCommand \alt { D <> { all } +m +m }
197 {
198 __talk_if_overlay:nTF {#1}
199 {#2}
200 {#3}
201 }

(End of definition for \alt. This function is documented on page ??.)

\onslide
__talk_onslide:n

Simply make transparent: this is done without grouping so we can work for example in
tabular cells.
202 \NewDocumentCommand \onslide { D <> { all } }
203 {
204 __talk_onslide:n {#1}
205 \ignorespaces
206 }
207 \cs_new_protected:Npn __talk_onslide:n #1
208 {
209 \tl_use:N \g__talk_onslide_tl
210 \tl_gclear:N \g__talk_onslide_tl
211 __talk_if_overlay:nF {#1}
212 {
213 __talk_opacity_begin:n { 0 }
214 \tl_gput_right:Nn \g__talk_onslide_tl
215 { __talk_opacity_end: }
216 }
217 }

(End of definition for \onslide and __talk_onslide:n. This function is documented on page ??.)

\g__talk_onslide_tl

218 \tl_new:N \g__talk_onslide_tl

(End of definition for \g__talk_onslide_tl.)

\temporal A tricky one: to separate the not-on-current-slide cases, the flag to continue is used.
219 \NewDocumentCommand \temporal { D <> { all } +m +m +m }
220 {
221 __talk_if_overlay:nTF {#1}
222 {#3}
223 {
224 \bool_if:NTF \g__talk_slide_continue_bool
225 {#4}
226 {#2}
227 }
228 }

(End of definition for \temporal. This function is documented on page ??.)

\pause A thin wrapper.
229 \NewDocumentCommand \pause { o }
230 {
231 \legacy_if:nF { measuring@ }
232 {

41

233 \IfNoValueTF {#1}
234 { \int_gincr:N \g__talk_pauses_int }
235 { \int_gset:Nn \g__talk_pauses_int {#1} }
236 \exp_args:Ne __talk_onslide:n { \int_eval:n { \g__talk_pauses_int + 1 } - }
237 }
238 }

(End of definition for \pause. This function is documented on page ??.)

1.5 Fixed-size areas
__talk_overprint_begin:n A common auxiliary for overprinting, which starts off much the same for both

overlayarea and overprint.
239 \cs_new_protected:Npn __talk_overprint_begin:n #1
240 {
241 \par
242 \vbox_set_to_wd:Nnw \l__talk_tmp_box {#1}
243 \raggedright
244 \ignorespaces
245 }

(End of definition for __talk_overprint_begin:n.)

overlayarea (env.) An initial approach: quite similar to a column.
246 \NewDocumentEnvironment { overlayarea } { m m }
247 { __talk_overprint_begin:n {#1} }
248 {
249 \vbox_set_end:
250 \vbox_to_ht:nn {#2}
251 {
252 \box_use_drop:N \l__talk_tmp_box
253 \vfil
254 }
255 \par
256 }

\l__talk_overprint_int Track the overprints on a slide: as the slide forms a group, we do not need to worry about
resetting.
257 \int_new:N \l__talk_overprint_int

(End of definition for \l__talk_overprint_int.)

__talk_frame_overprint: To refer to the current overprint environment within the document: needed in the .aux
so avoids using non-letters.
258 \cs_new:Npn __talk_frame_overprint:
259 {
260 \int_to_Roman:n \g__talk_frame_int
261 \int_to_roman:n \l__talk_overprint_int
262 }

(End of definition for __talk_frame_overprint:.)

42

overprint (env.)__talk_overprint_save_ht:
__talk_overprint_check_ht:n

For overprinting, in contrast to beamer we use a two-pass approach to save the size at
the end of the run: this means you can use \only for example in overprinting.
263 \NewDocumentEnvironment { overprint } { O { \textwidth } }
264 { __talk_overprint_begin:n {#1} }
265 {
266 \vbox_set_end:
267 \int_incr:N \l__talk_overprint_int
268 __talk_overprint_save_ht:
269 \cs_if_exist:cTF
270 { overprint@ __talk_frame_overprint: }
271 {
272 \dim_compare:vNnTF
273 { overprint@ __talk_frame_overprint: }
274 > { \box_ht:N \l__talk_tmp_box }
275 {
276 \vbox_to_ht:vn
277 { overprint@ __talk_frame_overprint: }
278 {
279 \box_use_drop:N \l__talk_tmp_box
280 \vfil
281 }
282 }
283 { \box_use_drop:N \l__talk_tmp_box }
284 }
285 { \box_use_drop:N \l__talk_tmp_box }
286 \par
287 }

As there is no clear end-point for overprinting, we need to be careful to keep the current
width separate from the saved one. The rest is then about saving to the .aux file and
helping out the user.
288 \cs_new_protected:Npn __talk_overprint_save_ht:
289 {
290 \tl_if_exist:cF { g__talk_overprint_ __talk_frame_overprint: _tl }
291 {
292 \tl_new:c { g__talk_overprint_ __talk_frame_overprint: _tl }
293 \tl_gset:cn { g__talk_overprint_ __talk_frame_overprint: _tl }
294 { 0pt }
295 }
296 \tl_gset:ce { g__talk_overprint_ __talk_frame_overprint: _tl }
297 {
298 \dim_max:vn { g__talk_overprint_ __talk_frame_overprint: _tl }
299 { \box_ht:N \l__talk_tmp_box }
300 }
301 \legacy_if:nT { @filesw }
302 {
303 \iow_now:Ne \@auxout
304 {
305 \gdef \exp_not:c { overprint@ __talk_frame_overprint: }
306 {
307 \exp_not:v { g__talk_overprint_ __talk_frame_overprint: _tl }
308 }
309 }
310 }

43

311 \hook_gput_code:nne { enddocument / afterlastpage } { talk }
312 { __talk_overprint_check_ht:n { __talk_frame_overprint: } }
313 }
314 \cs_new_protected:Npn __talk_overprint_check_ht:n #1
315 {
316 \bool_lazy_and:nnF
317 { \exp_not:N \cs_if_exist_p:c { overprint@ #1 } }
318 {
319 \dim_compare_p:vNv { overprint@ #1 } = { g__talk_overprint_ #1 _tl }
320 }
321 {
322 \msg_warning:nn { talk } { overprint-ht }
323 \cs_gset_protected:Npn __talk_overprint_check_ht:n ##1 { }
324 }
325 }
326 \msg_new:nnn { talk } { overprint-ht }
327 {
328 Overprint~area~height~has~changed:\\
329 rerun~LaTeX.
330 }
(End of definition for __talk_overprint_save_ht: and __talk_overprint_check_ht:n.)

1.6 Adding overlays to existing commands
\textbf
\textit
\textmd

\textnormal
\textrm
\textsc
\textsf
\textsl
\texttt
\textup

\emph
\stdtextbf
\stdtextit
\stdtextmd

\stdtextnormal
\stdtextrm
\stdtextsc
\stdtextsf
\stdtextsl
\stdtexttt
\stdtextup

\stdemph
__talk_textcmd_eqiv:n

Make the standard text commands overlay-aware. To keep the spacing unchanged when
the command is not active, we use the same approach as the kernel does for inserting the
right grouping.
331 \tl_map_inline:nn
332 {
333 \textbf
334 \textit
335 \textmd
336 \textnormal
337 \textrm
338 \textsc
339 \textsf
340 \textsl
341 \texttt
342 \textup
343 \emph
344 }
345 {
346 \ExpandArgs { c } \NewCommandCopy { std \cs_to_str:N #1 } #1
347 \ExpandArgs { Nne } \RenewDocumentCommand #1
348 { D <> { all } +m }
349 {
350 \exp_not:N __talk_if_overlay:nTF {##1}
351 { \exp_not:c { std \cs_to_str:N #1 } }
352 { \exp_not:N __talk_textcmd_eqiv:n }
353 {##2}
354 }
355 }
356 \cs_new_protected:Npn __talk_textcmd_eqiv:n #1

44

357 {
358 \mode_if_math:TF
359 { { \mbox {#1} } }
360 {
361 \mode_leave_vertical:
362 {#1}
363 }
364 }

(End of definition for \textbf and others. These functions are documented on page ??.)

\includegraphics
\stdincludegraphics

Just wrap up the args and forward if appropriate. The star is #1 here as that matches
the documented behavior of starred commands generally.
365 \RequirePackage { graphicx }
366 \NewCommandCopy \stdincludegraphics \includegraphics
367 \RenewDocumentCommand \includegraphics { s D <> { all } o o m }
368 {
369 __talk_if_overlay:nT {#2}
370 {
371 \use:e
372 {
373 \exp_not:N \stdincludegraphics
374 \IfBooleanT #1 { * }
375 \IfNoValueF {#3} { [\exp_not:n { {#3} }] }
376 \IfNoValueF {#4} { [\exp_not:n { {#4} }] }
377 }
378 {#5}
379 }
380 }

(End of definition for \includegraphics and \stdincludegraphics. These functions are documented
on page ??.)

\label
__talk_label:n

Here, we can’t wrap the existing command up as we need the space hack, so it has to
be declared from scratch. There is also a non-standard overlay default. At present, no
special tricks as seen in beamer.
381 \RenewDocumentCommand \label { D <> { 1 } m }
382 {
383 \@bsphack
384 __talk_if_overlay:nT {#1}
385 { __talk_label:n {#2} }
386 \@esphack
387 }
388 \cs_new_protected:Npn __talk_label:n #1
389 {
390 \begingroup
391 \UseHookWithArguments { label } { 1 } {#1}
392 \protected@write \@auxout { }
393 {
394 \string \newlabel {#1}
395 {
396 { \@currentlabel }
397 { \thepage }
398 { \@currentlabelname }

45

399 { \@currentHref }
400 { \@kernel@reserved@label@data }
401 }
402 }
403 \endgroup
404 }

(End of definition for \label and __talk_label:n. This function is documented on page ??.)

405 〈/class〉

46

Part VIII

ltx-talk-required – “Required”
definitions
1 ltx-talk-required implementation
Start the DocStrip guards.

1 〈∗class〉
Identify the internal prefix.

2 〈@@=talk〉
Here we collect up things that are more-or-less required to create a useful class but are

not defined by the LATEX kernel for historical reasons. They are therefore largely copies
from article.cls and contain “classical” definitions so that they follow the expectations
of third-party code.

\today This is the definition as done in the standard classes.
3 \cs_new_nopar:Npn \today
4 {
5 \ifcase \month \or
6 January \or
7 February \or
8 March \or
9 April \or

10 May \or
11 June \or
12 July \or
13 August \or
14 September \or
15 October \or
16 November \or
17 December
18 \fi
19 \space
20 \number \day ,
21 \space
22 \number \year
23 }

(End of definition for \today. This function is documented on page ??.)

1.1 Standard design settings
24 \setcounter { tocdepth } { 3 }
25 \setlength \arraycolsep { 5pt }
26 \setlength \tabcolsep { 6pt }
27 \setlength \arrayrulewidth { 0.4pt }
28 \setlength \doublerulesep { 2pt }
29 \setlength \tabbingsep { \labelsep }
30 \skip \@mpfootins = \skip \footins

47

31 \setlength \fboxsep { 3pt }
32 \setlength \fboxrule { 0.4pt }

1.2 List support
33 \setlength \labelsep { 0.5em }
34 \cs_new:Npn \labelenumi { \theenumi . }
35 \cs_new:Npn \labelenumii { (\theenumii) }
36 \cs_new:Npn \labelenumiii { \theenumiii . }
37 \cs_new:Npn \labelenumiv { \theenumiv . }
38 \cs_new:Npn \labelitemi { \labelitemfont \textbullet }
39 \cs_new:Npn \labelitemii { \labelitemfont \bfseries \textendash }
40 \cs_new:Npn \labelitemiii { \labelitemfont \textasteriskcentered }
41 \cs_new:Npn \labelitemiv { \labelitemfont \textperiodcentered }
42 \cs_new:Npn \labelitemfont { \normalfont }

43 \setlength \leftmargini { 2em }
44 \setlength \leftmarginii { 2em }
45 \setlength \leftmarginiii { 2em }
46 \setlength \labelsep { 0.5em }
47 \setlength \labelwidth { \leftmargini }
48 \addtolength \labelwidth { -\labelsep }
49 \cs_gset_nopar:Npn \@listi
50 {
51 \leftmargin \leftmargini
52 \topsep 3pt plus 2pt minus 2.5pt
53 \parsep 0pt
54 \itemsep 3pt plus 2pt minus 3pt
55 }
56 \cs_gset_eq:NN \@listI \@listi
57 \cs_gset_nopar:Npn \@listii
58 {
59 \leftmargin \leftmarginii
60 \topsep 2pt plus 1pt minus 2pt
61 \parsep 0pt plus 1pt
62 \itemsep \parsep
63 }
64 \cs_gset_nopar:Npn \@listiii
65 {
66 \leftmargin \leftmarginiii
67 \topsep 2pt plus 1pt minus 2pt
68 \parsep 0pt plus 1pt
69 \itemsep \parsep
70 }
71 \setlength \partopsep { 0pt }

72 〈/class〉

48

Part IX

ltx-talk-structure – Structural
commands
1 ltx-talk-structure implementation
Start the DocStrip guards.

1 〈∗class〉
Identify the internal prefix.

2 〈@@=talk〉

1.1 Frame title
\g__talk_frame_title_tl

\g__talk_frame_subtitle_tl 3 \tl_new:N \g__talk_frame_title_tl
4 \tl_new:N \g__talk_frame_subtitle_tl

(End of definition for \g__talk_frame_title_tl and \g__talk_frame_subtitle_tl.)

\frametitle Just data storage: at the present no use of the optional argument.
5 \NewDocumentCommand \frametitle { D <> { all } O {#3} m }
6 {
7 __talk_if_overlay:nT {#1}
8 { \tl_gset:Nn \g__talk_frame_title_tl {#3} }
9 }

10 \NewDocumentCommand \framesubtitle { D <> { all } O {#3} m }
11 {
12 __talk_if_overlay:nT {#1}
13 { \tl_gset:Nn \g__talk_frame_subtitle_tl {#3} }
14 }

(End of definition for \frametitle. This function is documented on page ??.)

__talk_frame_title:n
__talk_frame_title_tagged:n

Inserting the frame title requires we deal with tagging as well as appearance: if there is
a title, we need to tag just this part of the header.

15 \NewTemplateType { frametitle } { 1 }
16 \DeclareTemplateInterface { frametitle } { talk } { 1 }
17 {
18 after-vspace : skip = \bigskipamount ,
19 before-vspace : skip = 0em ,
20 color : tokenlist = ,
21 font : tokenlist = \Large \bfseries
22 }
23 \DeclareTemplateCode { frametitle } { talk } { 1 }
24 {
25 after-vspace = \l__talk_frametitle_after_skip ,
26 before-vspace = \l__talk_frametitle_before_skip ,
27 color = \l__talk_frametitle_color_tl ,
28 font = \l__talk_frametitle_font_tl
29 }

49

30 {
31 \noindent
32 \vspace { \l__talk_frametitle_before_skip }
33 \group_begin:
34 \tl_if_empty:NF \l__talk_frametitle_color_tl
35 { \color_select:V \l__talk_frametitle_color_tl }
36 \l__talk_frametitle_font_tl
37 \tl_if_blank:nF {#1}
38 { __talk_frame_title:n {#1} }
39 \par
40 \group_end:
41 \vspace { \l__talk_frametitle_after_skip }
42 }
43 \DeclareInstance { frametitle } { header } { talk } { }
44 \cs_new_protected:Npn __talk_frame_title:n #1
45 {
46 \bool_if:NTF \g__talk_frame_tag_bool
47 { __talk_frame_title_tagged:n }
48 { \use:n }
49 {#1}
50 }
51 \cs_new_protected:Npn __talk_frame_title_tagged:n #1
52 {
53 __talk_header_tag_begin:e
54 {
55 firstkid = true ,
56 parent = \int_use:N \g__talk_frame_struct_int ,
57 tag = frametitle ,
58 title = { \text_purify:n { \g__talk_frame_title_tl } } ,
59 }
60 \group_begin:
61 \tagpdfparaOff
62 #1
63 \group_end:
64 __talk_header_tag_end:
65 }

(End of definition for __talk_frame_title:n and __talk_frame_title_tagged:n.)

1.2 Sectioning
\l__talk_section_tl
\g__talk_section_tl

\l__talk_subsection_tl
\g__talk_subsection_tl

\l__talk_subsubsection_tl
\g__talk_subsubsection_tl

Two versions of the data store: one set locally (but at the top level) for general use, one
set (and more importantly cleared) globally to allow insertion in the header area just
once per name.

66 \tl_new:N \l__talk_section_tl
67 \tl_new:N \g__talk_section_tl
68 \tl_new:N \l__talk_subsection_tl
69 \tl_new:N \g__talk_subsection_tl
70 \tl_new:N \l__talk_subsubsection_tl
71 \tl_new:N \g__talk_subsubsection_tl

(End of definition for \l__talk_section_tl and others.)

\section
\subsection

\subsubsection
\thesection

\thesubsection
\thesubsubsection

Here, we need full LATEX counters, so create them using the appropriate mechanism: that
also means we can sort out counter dependency and the appearance (using the same setup

50

as in article). As (subsub)section numbers never increment inside frames, we remove these
counters from the general tracker.

72 \newcounter { section }
73 \newcounter { subsection } [section]
74 \newcounter { subsubsection } [subsection]
75 \seq_gremove_all:Nn \l__talk_cnt_reset_seq { section }
76 \seq_gremove_all:Nn \l__talk_cnt_reset_seq { subsection }
77 \seq_gremove_all:Nn \l__talk_cnt_reset_seq { subsubsection }
78 \cs_gset:Npn \thesection { \@arabic \c@section }
79 \cs_gset:Npn \thesubsection { \thesection . \@arabic \c@subsection }
80 \cs_gset:Npn \thesubsubsection { \thesubsection . \@arabic \c@subsubsection }

(End of definition for \section and others. These functions are documented on page ??.)

\section
\subsection

\subsubsection
\insertsection

\insertsubsection
\insertsubsubsection

The sectioning commands all have essentially the same form: we therefore create using a
generator with the necessary conditionals in place. As we do not typeset sections at this
stage, the code is quite different from article. This also means that the bookmark links
need to point forward to the next slide: if that doesn’t appear, the bookmarks will be
out. Using the general scratch sequence here should be OK: it really is a one-off setting.
We need a sequence to allow indexed mapping to avoid any extra setup for the depth
value.

81 \seq_set_from_clist:Nn \l_tmpa_seq
82 { section , subsection , subsubsection }
83 \seq_map_indexed_inline:Nn \l_tmpa_seq
84 {
85 \use:e
86 {
87 \NewDocumentCommand \exp_not:c { insert #2 } { }
88 {
89 \exp_not:N \tl_use:N
90 \exp_not:c { l__talk_ #2 _tl }
91 }
92 \NewDocumentCommand \exp_not:c {#2}
93 { s D <> { all } O {##4} m }
94 {
95 \exp_not:N \refstepcounter {#2}
96 \UseTaggingSocket { sec / end } { \use:c { toclevel@ #2 } }
97 \UseTaggingSocket { sec / begin }
98 {
99 { \use:c { toclevel@ #2 } }

100 {
101 tag =
102 \exp_not:N \UseStructureName
103 { sec / \use:c { toclevel@ #2 } }
104 }
105 }
106 \tl_set:Nn \exp_not:c { l__talk_ #2 _tl } {##4}
107 \UseTaggingSocket { talk / sec / title } {#2}
108 \str_if_eq:nnT {#2} { section }
109 { \tl_clear:N \exp_not:N \l__talk_subsection_tl }
110 \str_if_eq:nnF {#2} { subsubsection }
111 { \tl_clear:N \exp_not:N \l__talk_subsubsection_tl }
112 \exp_not:N \addcontentsline { toc } {#2}

51

113 {
114 \exp_not:N \int_compare:nNnF {#1} >
115 { \exp_not:N \value { secnumdepth } }
116 {
117 \exp_not:N \protect \exp_not:N \numberline
118 { \exp_not:c { the #2 } }
119 }
120 ##4
121 }
122 \hook_use:n { #2 / begin }
123 }
124 \hook_new:n { #2 / begin }
125 }
126 }

(End of definition for \section and others. These functions are documented on page ??.)

talk/sec/title
__talk_sect_tag:nn

The argument is one of section, subsection or subsubsection.
127 \NewTaggingSocket { talk / sec / title } { 1 }
128 \NewTaggingSocketPlug { talk / sec / title } { default }
129 { \exp_args:Ne __talk_sect_tag:nn { \text_purify:v { l__talk_ #1 _ tl } } {#1} }
130 \cs_new_protected:Npn __talk_sect_tag:nn #1#2
131 {
132 \tag_struct_begin:e
133 {
134 tag =
135 \UseStructureName { sec / \use:c { toclevel@ #2 } / title } ,
136 title = {#1} ,
137 actualtext = {#1} ,
138 }
139 \tag_struct_end:
140 }
141 \AssignTaggingSocketPlug { talk / sec / title } { default }

(End of definition for talk/sec/title and __talk_sect_tag:nn. This function is documented on page
??.)

1.3 Table of contents
\@starttoc The standard kernel implementation here deliberately overwrites the file as soon as it’s

read. That’s no good for us as the table of contents can be read multiple times. So we
modify the code: we start from the tagging-aware version (this may need to be revisited).
We retain the LATEX 2ε code as much as possible.
142 \cs_gset_protected:Npn \@starttoc #1
143 {
144 \begingroup
145 \makeatletter
146 \UseTaggingSocket { toc / starttoc / before } {#1}
147 \@input { \jobname .#1 }
148 \UseTaggingSocket { toc / starttoc / after } {#1}
149 \legacy_if:nT { @filesw }
150 {
151 \AddToHook { enddocument / afterlastpage }
152 {

52

153 \expandafter \newwrite \csname tf@ #1 \endcsname
154 \immediate \openout \csname tf@ #1 \endcsname \jobname .#1 \relax
155 }
156 }
157 \@nobreakfalse
158 \endgroup
159 }

(End of definition for \@starttoc. This function is documented on page ??.)

\tableofcontents For the present simply print the output.
160 \NewDocumentCommand \tableofcontents { O { } }
161 {
162 \group_begin:
163 \@starttoc { toc }
164 \group_end:
165 }

(End of definition for \tableofcontents. This function is documented on page ??.)

\l@section
\l@subsection

\l@subsubsection
__talk_toc_aux:nnnn
__talk_toc_dest:n
__talk_toc_dest:w

__talk_toc_level:nnnn

Initial hard-coded versions to be templated once we have some other effects also working.
We may need to look at this “higher up” as we will need to know the section numbers.
166 \cs_new_protected:Npn \l@section #1#2
167 { __talk_toc_aux:nnnn { 1 } { \bfseries \color { structure } } {#1} {#2} }
168 \cs_new_protected:Npn \l@subsection #1#2
169 {
170 __talk_toc_aux:nnnn
171 { 2 }
172 {
173 \skip_set:Nn \leftskip { 2em }
174 \color { . }
175 }
176 {#1} {#2}
177 }
178 \cs_new_protected:Npn \l@subsubsection #1#2
179 {
180 __talk_toc_aux:nnnn
181 { 3 }
182 {
183 \skip_set:Nn \leftskip { 4em }
184 \color { . }
185 \footnotesize
186 }
187 {#1} {#2}
188 }
189 \cs_new_protected:Npn __talk_toc_aux:nnnn #1#2#3#4
190 {
191 \int_compare:nNnTF { \value { section } } < 1
192 { \use:n }
193 { __talk_toc_dest:n }
194 { __talk_toc_level:nnnn {#1} {#2} {#3} {#4} }
195 }

53

We can extract the details for the TOC levels from \@contentsline@destination. At
present, that is quite simple-minded: if we are in the current section, show fully, else
make semi-opaque. Needs a rounded-out interface but the basic idea will be the same.
196 \cs_new_protected:Npn __talk_toc_dest:n
197 {
198 \exp_after:wN __talk_toc_dest:w \@contentsline@destination
199 . 0 . 0 . 0 . \q_stop
200 }
201 \cs_new_protected:Npn __talk_toc_dest:w #1 . #2 . #3 . #4 . #5 \q_stop #6
202 {
203 \int_compare:nNnTF { \value { section } } = {#2}
204 {#6}
205 {
206 \group_begin:
207 \opacity_select:n { 0.2 }
208 #6
209 \group_end:
210 }
211 }
212 \cs_new_protected:Npn __talk_toc_level:nnnn #1#2#3#4
213 {
214 \int_compare:nNnF {#1} > { \value { tocdepth } }
215 {
216 \group_begin:
217 \noindent
218 #2
219 \UseHookWithArguments { contentsline / text / before } { 4 }
220 {#1} {#3} {#4} { \@contentsline@destination }
221 #3
222 \UseHookWithArguments { contentsline / text / after } { 4 }
223 {#1} {#3} {#4} { \@contentsline@destination }
224 \UseHookWithArguments { contentsline / page / before } { 4 }
225 {#1} {#3} {#4}
226 { \@contentsline@destination }
227 \UseHookWithArguments { contentsline / page / after } { 4 }
228 {#1} {#3} {#4}
229 { \@contentsline@destination }
230 \par
231 \group_end:
232 \vfil
233 }
234 }

(End of definition for \l@section and others. These functions are documented on page ??.)

235 \setcounter { tocdepth } { 2 }

1.4 Block environments
description (env.)

quote (env.)
quotation (env.)

verse (env.)
stdquote (env.)

stdquotation (env.)
stdverse (env.)

Stub logical environments: needed as the tagging setup expects these to exist.
236 \NewDocumentEnvironment { description } { } { } { }
237 \NewDocumentEnvironment { quote } { } { } { }
238 \NewDocumentEnvironment { quotation } { } { } { }
239 \NewDocumentEnvironment { verse } { } { } { }

54

240 \AddToHook { begindocument / before }
241 {
242 \clist_map_inline:nn { quote , quotation , verse }
243 {
244 \NewEnvironmentCopy { std #1 } {#1}
245 \RenewDocumentEnvironment {#1} { D <> { all } !O { } }
246 {
247 __talk_action_begin:n {##1}
248 \begin { std #1 } [{##2}]
249 \ignorespaces
250 }
251 {
252 \end { std #1 }
253 __talk_action_end:
254 }
255 }
256 }

block (env.)
257 \NewDocumentEnvironment { block } { D <> { all } m }
258 {
259 __talk_action_begin:n {#1}
260 \par
261 \vbox_set:Nw \l__talk_tmp_box
262 \group_begin:
263 \medskip
264 \leavevmode
265 \normalfont \large \bfseries
266 \color { structure }
267 #2
268 \par
269 \medskip
270 \group_end:
271 }
272 {
273 \vbox_set_end:
274 \box_use:N \l__talk_tmp_box
275 \par
276 __talk_action_end:
277 }

1.5 Lists
\item

__talk_item_parse_spec:w
__talk_item_parse_spec:n

Again, add the additional argument: here, we have to do a little gymnastics. The test
for an overlay has to come after the standard item definition: in a list, items have to
close the structure before them first, so if we test too early, we’d end up covering then
uncovering straight away!
278 \AddToHook { begindocument / before }
279 {
280 \NewCommandCopy \stditem \item
281 \RenewDocumentCommand \item { d <> o }
282 {
283 \IfNoValueTF {#2}

55

284 { \stditem }
285 { \stditem [{#2}] }
286 \IfNoValueTF {#1}
287 {
288 \exp_after:wN __talk_item_parse_spec:w
289 \l__talk_action_spec_str < all > \q_stop
290 }
291 { __talk_item_parse_spec:n {#1} }
292 }
293 }

Parsing the spec is a separate function here as there are a couple of routes to get here. At
present we only have a false branch, but for spacing we likely will need to add something
to the true branch too. The odd stuff with \currentgrouplevel here is needed so we
only close the item at the correct nesting, allowing for the group that gets added.
294 \cs_new_protected:Npn __talk_item_parse_spec:w #1 < #2 > #3 \q_stop
295 { __talk_item_parse_spec:n {#2} }
296 \cs_new_protected:Npn __talk_item_parse_spec:n #1
297 {
298 \bool_lazy_or:nnF
299 { \tl_if_blank_p:n {#1} }
300 { \str_if_eq_p:nn {#1} { all } }
301 {
302 \tl_set:Ne \l__talk_list_end_tl
303 {
304 \exp_not:N \int_compare:nNnT \tex_currentgrouplevel:D =
305 { \int_use:N \tex_currentgrouplevel:D + 1 }
306 {
307 __talk_action_end:
308 \tl_clear:N \exp_not:N \l__talk_list_end_tl
309 }
310 }
311 __talk_action_begin:n {#1}
312 }
313 }

(End of definition for \item , __talk_item_parse_spec:w , and __talk_item_parse_spec:n. This func-
tion is documented on page ??.)

\l__talk_list_end_tl

314 \tl_new:N \l__talk_list_end_tl

(End of definition for \l__talk_list_end_tl.)

__block_inter_item:
\endblockenv

There are no currently no hooks for insertion at the end of list items, so we have to do it
manually. We cannot target __block_list_item_end:/__block_list_end: as these
change definition if tagging is suspended.
315 \cs_gset_protected:Npn __block_inter_item:
316 {
317 \legacy_if:nT { @inlabel }
318 { \indent \par }
319 \mode_if_horizontal:T
320 {
321 __block_skip_remove_last:
322 __block_skip_remove_last:

56

323 \par
324 }
325 \l__talk_list_end_tl
326 __kernel_list_item_end:
327 __kernel_list_item_begin:
328 \addpenalty \@itempenalty
329 \addvspace \itemsep
330 }
331 \cs_gset:Npn \endblockenv
332 {
333 __block_debug_typeout:n { blockenv~common~ending \on@line }
334 \bool_if:NT \l__block_level_incr_bool
335 { \int_gdecr:N \g_block_nesting_depth_int }
336 \legacy_if:nT { @inlabel }
337 {
338 \mode_leave_vertical:
339 \legacy_if_gset_false:n { @inlabel }
340 }
341 __block_if_list:T
342 { \legacy_if:nT { @newlist } { \@noitemerr } }
343 \mode_if_horizontal:TF
344 {
345 __block_skip_remove_last:
346 __block_skip_remove_last:
347 \par
348 }
349 { \@inmatherr { \end { \@currenvir } } }
350 \l__talk_list_end_tl
351 __kernel_displayblock_end:
352 __block_if_list:T { \legacy_if_gset_false:n { @newlist } }
353 \legacy_if:nF { @noparlist }
354 {
355 __block_skip_set_to_last:N \l_tmpa_skip
356 \dim_compare:nNnT \l_tmpa_skip > \c_zero_dim
357 {
358 \skip_vertical:n { - \l_tmpa_skip }
359 \skip_vertical:n { \l_tmpa_skip + \parskip - \@outerparskip }
360 }
361 \addpenalty \@endparpenalty
362 \addvspace \l__block_topsepadd_skip
363 }
364 \socket_use:n { block / endpe }
365 }

(End of definition for __block_inter_item: and \endblockenv. This function is documented on page
??.)

itemize (env.)
enumerate (env.)

description (env.)

Allow for the classical beamer syntax.
366 \AddToHook { begindocument / before }
367 {
368 \clist_map_inline:nn { itemize , enumerate , description }
369 {
370 \RenewDocumentEnvironment {#1} { = { action-spec } !o }
371 {

57

372 \IfNoValueTF {##1}
373 { \UseInstance { blockenv } {#1} { } }
374 { \UseInstance { blockenv } {#1} {##1} }
375 }
376 { \endblockenv }
377 }
378 }

And add the structural color to item labels.
379 \AddToHook { begindocument / before }
380 {
381 \EditInstance { item } { basic }
382 { label-format = \color { structure } #1 }
383 \EditInstance { item } { description }
384 { label-format = \normalfont \bfseries \color { structure } #1 }
385 }

\l__talk_action_spec_str Add an overlay key to the block template. Placed here, it applies before the \item starts,
so we do not have to redefine the latter to do actions up-front. This also means it can
apply to whatever we want it to within a block.
386 \keys_define:nn { template / block / display }
387 { action-spec .str_set:N = \l__talk_action_spec_str }

(End of definition for \l__talk_action_spec_str.)

1.6 Theorems, etc.
\newtheorem

\stdnewtheorem
We need to extend the creation of theorems in two ways: add the overlay argument, and
add the counter to the list of those reset during overlay creation.
388 \NewCommandCopy \stdnewtheorem \newtheorem
389 \RenewDocumentCommand \newtheorem { m O {#1} m o }
390 {
391 \IfNoValueTF {#4}
392 { \stdnewtheorem {#1} [{#2}] {#3} }
393 { \stdnewtheorem {#1} [{#2}] {#3} [{#4}] }
394 \NewEnvironmentCopy { std #1 } {#1}
395 \RenewDocumentEnvironment {#1} { D <> { all } o }
396 {
397 __talk_action_begin:n {##1}
398 \IfNoValueTF {##2}
399 { \begin { std #1 } }
400 { \begin { std #1 } [{##2}] }
401 \ignorespaces
402 }
403 {
404 \end { std #1 }
405 __talk_action_end:
406 }
407 }

(End of definition for \newtheorem and \stdnewtheorem. These functions are documented on page ??.)

408 〈/class〉

58

Part X

ltx-talk-title – Title pages
1 ltx-talk-title implementation
Start the DocStrip guards.

1 〈∗class〉
Identify the internal prefix.

2 〈@@=talk〉

\@author
\@date

\@institute
\@subtitle

\@title
\@shortauthor

\@shortdate
\@shortinstitute
\@shortsubtitle

\@shorttitle

We create a set of keys and variables in one go. Following the classical kernel approach,
all of the underlying storage is global. The short values will always be set in the following
code so can be used automatically anywhere we might want them.

3 \clist_map_inline:nn
4 { author , date , institute , subtitle , title }
5 {
6 \keys_define:nn { talk / metadata }
7 {
8 #1 .tl_gset:c = @ #1 ,
9 short- #1 .tl_gset:c = @short #1

10 }
11 }

Allow empty values for author and title.
12 \tl_gclear:N \@author
13 \tl_gclear:N \@title

As the date has a standard value, that has to be propagated.
14 \tl_gset_eq:NN \@shortdate \@date

(End of definition for \@author and others. These variables are documented on page ??.)

\author
\date

\title

Slightly repetitive but as we need to handle the tagging aspects, this is easier than using
a loop. The main aim is to add the short metadata concept. Notice that keys are set
before the main data storage in case someone set the value as a key as well as a mandatory
argument.

15 \RenewDocumentCommand \author { = { short-author } O { {#2} } m }
16 {
17 \keys_set:nn { talk / metadata } {#1}
18 \tl_gset:Nn \@author {#2}
19 \tl_gset_eq:NN \g__tag_title_author_tl \@author
20 \keys_set_known:nn { hyp } {#1}
21 }
22 \RenewDocumentCommand \date { = { short-date } O { {#2} } m }
23 {
24 \keys_set:nn { talk / metadata } {#1}
25 \tl_gset:Nn \@date {#2}
26 }
27 \RenewDocumentCommand \title { = { short-title } O { {#2} } m }
28 {
29 \keys_set:nn { talk / metadata } {#1}

59

30 \tl_gset:Nn \@title {#2}
31 \tl_gset_eq:NN \g__tag_title_title_tl \@title
32 \keys_set_known:nn { hyp } {#1}
33 }

(End of definition for \author , \date , and \title. These functions are documented on page ??.)

\institute
\subtitle

Simple storage at present: unlike some of the kernel data, there is not a lot to do here.
34 \NewDocumentCommand \institute { = { short-institute } O { {#2} } m }
35 {
36 \keys_set:nn { talk / metadata } {#1}
37 \tl_gset:Nn \@institute {#2}
38 }
39 \NewDocumentCommand \subtitle { = { short-subtitle } O { {#2} } m }
40 {
41 \keys_set:nn { talk / metadata } {#1}
42 \tl_gset:Nn \@subtitle {#2}
43 }

(End of definition for \institute and \subtitle. These functions are documented on page ??.)

\l__talk_titlelem_after_skip
\l__talk_titlelem_before_skip

\l__talk_titlelem_color_tl
\l__talk_titlelem_font_tl

\l__talk_titlelem_tag_begin_tl
\l__talk_titlelem_tag_end_tl

As the various elements of the titlepage share certain characteristics, we use a single
template and split them as instances.

44 \NewTemplateType { titlepage-element } { 1 }
45 \DeclareTemplateInterface { titlepage-element } { talk } { 1 }
46 {
47 after-skip : length = 0em ,
48 before-skip : length = 0em ,
49 color : tokenlist = . ,
50 font : tokenlist = \normalfont ,
51 tag-begin : tokenlist = ,
52 tag-end : tokenlist =
53 }
54 \DeclareTemplateCode { titlepage-element } { talk } { 1 }
55 {
56 after-skip = \l__talk_titlelem_after_skip ,
57 before-skip = \l__talk_titlelem_before_skip ,
58 color = \l__talk_titlelem_color_tl ,
59 font = \l__talk_titlelem_font_tl ,
60 tag-begin = \l__talk_titlelem_tag_begin_tl ,
61 tag-end = \l__talk_titlelem_tag_end_tl
62 }
63 {
64 \tl_if_empty:nF {#1}
65 {
66 \vspace { \l__talk_titlelem_before_skip }
67 \group_begin:
68 \tl_if_empty:NF \l__talk_titlelem_color_tl
69 { \color_select:V \l__talk_titlelem_color_tl }
70 \l__talk_titlelem_font_tl
71 \l__talk_titlelem_tag_begin_tl
72 #1
73 \par
74 \l__talk_titlelem_tag_end_tl

60

75 \group_end:
76 \vspace { \l__talk_titlelem_after_skip }
77 }
78 }

Standard settings are taken from beamer with minor adjustments.
79 \DeclareInstance { titlepage-element } { author } { talk }
80 { before-skip = 1em }
81 \DeclareInstance { titlepage-element } { date } { talk }
82 { after-skip = 0.5em }
83 \DeclareInstance { titlepage-element } { institute } { talk }
84 { font = \scriptsize }
85 \DeclareInstance { titlepage-element } { subtitle } { talk }
86 { before-skip = 0.25em , color = structure }
87 \DeclareInstance { titlepage-element } { title } { talk }
88 {
89 color = structure ,
90 font = \Large ,
91 tag-begin = \tag_struct_begin:n { tag = Title } ,
92 tag-end = \tag_struct_end:
93 }

(End of definition for \l__talk_titlelem_after_skip and others.)

\l__talk_titlepage_order_clist
\l__talk_titlepage_alignment_tl

\l__talk_titlepage_framestyle_tl
\l__talk_frame_alignment_tl

Here, we deal with the overall style: notice that frame vertical alignment actually applies
elsewhere, which is why it doesn’t show up in the template code part. As a result, we
have a slightly repetitive key interface.

94 \NewTemplateType { titlepage } { 0 }
95 \DeclareTemplateInterface { titlepage } { talk } { 0 }
96 {
97 element-order : commalist =
98 {
99 title ,

100 subtitle ,
101 author ,
102 institute ,
103 date
104 } ,
105 framestyle : tokenlist = talk ,
106 horizontal-alignment : choice { left , center , right } = center ,
107 vertical-alignment : choice { bottom , center , stretch , top } = center
108 }
109 \DeclareTemplateCode { titlepage } { talk } { 0 }
110 {
111 element-order = \l__talk_titlepage_order_clist ,
112 framestyle = \l__talk_titlepage_framestyle_tl ,
113 horizontal-alignment =
114 {
115 left = \tl_set:Nn \l__talk_titlepage_alignment_tl { flushleft } ,
116 center = \tl_set:Nn \l__talk_titlepage_alignment_tl { center } ,
117 right = \tl_set:Nn \l__talk_titlepage_alignment_tl { flushright }
118 } ,
119 vertical-alignment =
120 {
121 bottom = \tl_set:Nn \l__talk_frame_alignment_tl { bottom } ,

61

122 center = \tl_set:Nn \l__talk_frame_alignment_tl { center } ,
123 stretch = \tl_set:Nn \l__talk_frame_alignment_tl { stretch } ,
124 top = \tl_set:Nn \l__talk_frame_alignment_tl { top }
125 }
126 }
127 {
128 \tl_if_empty:NF \l__talk_titlepage_framestyle_tl
129 { \exp_args:NV \thispagestyle \l__talk_titlepage_framestyle_tl }
130 \begin { \l__talk_titlepage_alignment_tl }
131 \cs_set_protected:Npn \and { \quad }
132 \clist_map_inline:Nn \l__talk_titlepage_order_clist
133 {
134 \ExpandArgs { nnv } \UseInstance { titlepage-element }
135 {##1} { @ ##1 }
136 }
137 \end { \l__talk_titlepage_alignment_tl }
138 }

(End of definition for \l__talk_titlepage_order_clist and others.)

\maketitle A very simple setup.
139 \NewDocumentCommand \maketitle { O {} }
140 {
141 \bool_if:NTF \l__talk_frame_bool
142 { \UseTemplate { titlepage } { talk } {#1} }
143 {
144 \begin { frame }
145 \UseTemplate { titlepage } { talk } {#1}
146 \end { frame }
147 }
148 }

(End of definition for \maketitle. This function is documented on page ??.)

149 〈/class〉

62

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
@ commands:

\@_decode_overlay_+:nw 123
\\ . 328

A
\abovecaptionskip 139, 141
\action . 140
actionenv (env.) 140
\addcontentsline 112
\addpenalty 328, 361
\AddToHook 49, 54, 66, 151,

198, 240, 259, 278, 324, 366, 379, 394
\addtolength . 48
\addvspace 329, 362
\alert . 38, 118
alertenv (env.) 125
\alt . 196
\and . 131
\arabic . 391
\arraycolsep . 25
\arrayrulewidth 27
\AssignTaggingSocketPlug 141
\author . 15

B
\begin . . . 111, 112, 130, 144, 248, 399, 400
\begingroup 144, 146, 390
\belowcaptionskip 140, 142
\bfseries 21, 39, 167, 265, 384
\bigskipamount 18
block (env.) . 257
block commands:

\g_block_nesting_depth_int 335
block internal commands:

__block_debug_typeout:n 333
__block_if_list:TF 341, 352
__block_inter_item: 315, 315
\l__block_level_incr_bool 334
__block_list_end: 56
__block_list_item_end: 56
__block_skip_remove_last:

. 321, 322, 345, 346
__block_skip_set_to_last:N 355
\l__block_topsepadd_skip 362

bool commands:
\bool_do_while:Nn 27
\bool_gset_false:N . . . 30, 36, 40, 416

\bool_gset_true:N . 205, 213, 219, 408
\bool_if:NTF 6, 44,

46, 59, 65, 73, 81, 85, 86, 98, 127,
141, 172, 183, 185, 224, 250, 334, 422

\bool_lazy_and:nnTF . . 21, 41, 216, 316
\bool_lazy_any:nTF 53, 80
\bool_lazy_or:nnTF 5, 21, 298
\bool_lazy_or_p:nn 24
\bool_new:N 3,

3, 7, 8, 13, 136, 138, 139, 385, 386, 387
\bool_set_eq:NN 164, 168
\bool_set_false:N

. . . 27, 28, 93, 112, 125, 157, 428, 448
\bool_set_true:N . . 24, 29, 44, 61,

146, 155, 183, 202, 215, 401, 436, 456
\c_false_bool 15
\c_true_bool 14, 179

box commands:
\box_dp:N . 25
\box_ht:N 60, 274, 299
\box_move_down:nn 58
\box_new:N 4, 104
\box_use:N 274
\box_use_drop:N

. 24, 252, 279, 283, 285, 320
\box_wd:N . 30

box internal commands:
__box_dim_eval:n 22, 25, 30, 33
__box_set_to_wd: 29, 34

C
\clearpage . 92
clist commands:

\clist_const:Nn 50
\clist_if_in:NnTF 57, 182
\clist_map_break: 220
\clist_map_inline:Nn . . . 132, 185, 307
\clist_map_inline:nn

. 3, 104, 121, 242, 368
\clist_new:N 10, 14
\clist_pop:NNTF 303
\clist_set:Nn 93, 181

\color 4, 11, 56, 167, 174, 184, 266, 382, 384
color commands:

\color_ensure_current: 61
\color_group_begin: 23, 35
\color_group_end: 23
\color_math:nn 9, 26

63

\color_math:nnn 10, 27
\color_select:n 7, 16,

35, 37, 60, 61, 69, 96, 204, 248, 301, 342
\color_select:nn 8, 17, 38

\colorlet . 65
column (env.) . 69
columns (env.) . 9
\columnwidth 16, 75, 111
cs commands:

\cs_generate_variant:Nn 7, 8, 9, 10,
93, 94, 96, 97, 98, 99, 100, 101, 102, 175

\cs_gset:Npn 78, 79, 80, 331
\cs_gset_eq:NN 56
\cs_gset_nopar:Npn 49, 57, 64
\cs_gset_protected:Npe 51, 78
\cs_gset_protected:Npn

. 18, 27, 37, 45, 47, 142, 142, 315, 323
\cs_if_exist:NTF 110, 269
\cs_if_exist_p:N 317
\cs_if_exist_use:NTF 137, 187
\cs_new:Npn 6, 7, 34, 35, 36, 37, 38, 39,

40, 41, 42, 199, 258, 330, 390, 391, 396
\cs_new_eq:NN 5, 6, 141, 389
\cs_new_nopar:Npn 3, 373
\cs_new_protected:Npe 55, 70, 96
\cs_new_protected:Npn 9, 11, 16, 18,

18, 35, 37, 40, 44, 45, 50, 50, 51, 52,
52, 55, 56, 56, 57, 63, 67, 69, 71, 72,
77, 79, 81, 83, 84, 94, 96, 100, 102,
103, 103, 106, 112, 116, 123, 130,
131, 134, 136, 144, 149, 151, 151,
154, 161, 162, 166, 168, 168, 173,
176, 178, 179, 181, 189, 189, 196,
199, 201, 207, 212, 239, 288, 294,
296, 314, 336, 356, 388, 398, 404, 412

\cs_set:Npn 14, 15, 59
\cs_set_eq:NN

. 61, 196, 355, 356, 370, 371, 381, 382
\cs_set_nopar:Npn 113,

348, 350, 354, 358, 360, 365, 375, 380
\cs_set_protected:Npn

. 29, 131, 143, 146, 208
\cs_to_str:N 346, 351

\csname 150, 153, 154

D
\date . 15
\day . 20
\DeclareColor 62, 68, 69, 70
\DeclareInstance 43,

79, 81, 83, 85, 87, 95, 115, 211,
212, 213, 214, 215, 216, 217, 258, 323

\DeclareInstanceCopy 261, 326

\DeclareTemplateCode
. . . . 23, 54, 92, 99, 109, 191, 229, 276

\DeclareTemplateInterface
. . . . 16, 45, 90, 94, 95, 184, 219, 266

\definecolor . 66
description (env.) 236, 366
dim commands:

\dim_compare:nNnTF 97, 272, 356
\dim_compare_p:nNn 98, 319
\dim_const:Nn 143, 149
\dim_eval:n 40, 41, 42
\dim_max:nn 99, 298
\dim_set:Nn 15, 74
\dim_set_eq:NN 16, 75
\dim_to_decimal:n 136
\dim_use:N 164, 165
\c_zero_dim 356

\DocumentMetadata 7
\doublerulesep 28

E
\EditInstance 262, 327, 381, 383
\emph . 331
\end 118, 119, 137, 146, 252, 349, 404
\endblockenv 315, 376
\endcsname 150, 153, 154
\endfloatenv 116, 129
\endgroup 152, 158, 403
enumerate (env.) 366
environments:

actionenv 140
alertenv . 125
block . 257
column . 69
columns . 9
description 236, 366
enumerate 366
figure . 121
invisibleenv 113
itemize . 366
onlyenv . 133
overlayarea 246
overprint 263
quotation 236
quote . 236
stdquotation 236
stdquote . 236
stdverse . 236
table . 121
uncoverenv 113
verse . 236
visibleenv 113

exp commands:
\exp_after:wN 198, 288

64

\exp_args:Ne 17, 46, 129, 236
\exp_args:Nne 438
\exp_args:No 32
\exp_args:NV 53, 129
\exp_args_generate:n 95
\exp_not:N 57, 59, 60, 60, 61, 61, 64,

65, 69, 70, 73, 76, 78, 81, 87, 89, 90,
92, 95, 98, 99, 102, 103, 104, 106,
109, 109, 111, 111, 112, 114, 115,
115, 116, 117, 118, 137, 141, 146,
147, 149, 151, 152, 155, 156, 160,
304, 305, 308, 317, 350, 351, 352, 373

\exp_not:n 307, 375, 376, 439
\exp_stop_f: 40, 41, 42

\expandafter 153
\ExpandArgs .

106, 113, 134, 252, 305, 312, 346, 347

F
\fboxrule . 32
\fboxsep . 31
\fi . 18, 148
figure (env.) . 121
\figurename . 132
file commands:

\file_if_exist_input:nTF 136
\file_input:n 138

\footins . 30
\footnotesize 185
\footskip 290, 291
fp commands:

\fp_eval:n 141
\fp_to_dim:n 151

\frame . 27, 26, 397
frame . 422
frame* . 422
\framesubtitle 10
\frametitle 5, 429, 439

G
\gdef . 305
\geometry . 4
group commands:

\group_begin:
. . 11, 33, 35, 58, 60, 67, 120, 142,
153, 162, 202, 206, 216, 246, 262, 341

\c_group_begin_token 32
\group_end:

. . 40, 40, 54, 62, 63, 75, 123, 146,
164, 194, 207, 209, 231, 256, 270, 345

\group_insert_after:N 34

H
hbox commands:

\hbox:n . 56

\hbox_set_end: 23
\hbox_set_to_wd:Nnw 14

\headsep 224, 243, 244
\hfil 17, 22, 88, 274, 318, 352, 363, 368, 378
hook commands:

\hook_gput_code:nnn 94, 140, 311
\hook_new:n 124
\hook_use:n 122

\hspace . 201, 208
\hss . 158
\hypersetup . 201

I
\IfBooleanT . 374
\ifcase . 5
\IfFormatAtLeastF 7
\IfNoValueF 375, 376
\IfNoValueTF 15, 25,

36, 47, 64, 233, 283, 286, 372, 391, 398
\ignorespaces

. . . 18, 19, 80, 150, 205, 244, 249, 401
\immediate . 154
\includegraphics 365
\indent . 318
\insertsection 81
\insertsubsection 81
\insertsubsubsection 81
\institute . 34
int commands:

\int_compare:nNnTF 114,
191, 201, 203, 204, 210, 212, 214, 304

\int_compare_p:nNn 217, 218
\int_eval:n 236
\int_gdecr:N 335
\int_gincr:N 29, 130, 234, 400
\int_gset:Nn 235, 407
\int_gset_eq:NN 129, 134, 139
\int_gzero:N 25, 74
\int_incr:N 267
\int_max:nn 176
\int_new:N . 4, 5, 71, 128, 145, 257, 388
\int_to_Roman:n 260
\int_to_roman:n 261
\int_use:N . . 8, 14, 52, 56, 68, 305, 393
\c_max_int 195, 218

\invisible . 104
invisibleenv (env.) 113
iow commands:

\iow_now:Nn 303
\item . 58, 278
itemize (env.) 366
\itemsep 54, 62, 69, 329

J
\jobname 147, 154

65

K
kernel internal commands:

__kernel_backend_literal_pdf:n . 66
__kernel_color_backend_stack_-

push:nn 68
__kernel_displayblock_end: 351
__kernel_list_item_begin: 327
__kernel_list_item_end: 326

keys commands:
\l_keys_choice_tl 119
\keys_define:nn

. 3, 5, 6, 28, 106, 121, 149, 386
\keys_set:nn . . 7, 13, 17, 24, 29, 36,

41, 46, 72, 128, 162, 427, 435, 447, 455
\keys_set_known:nn 20, 32
\l_keys_value_tl 43, 159

L
\label . 381
\labelenumi . 34
\labelenumii . 35
\labelenumiii . 36
\labelenumiv . 37
\labelitemfont 38, 39, 40, 41, 42
\labelitemi . 38
\labelitemii . 39
\labelitemiii . 40
\labelitemiv . 41
\labelsep 29, 33, 46, 48
\labelwidth 47, 48
\Large . 21, 90
\large . 265
\leavevmode 77, 264
\leftmargin 51, 59, 66
\leftmargini 43, 47, 51
\leftmarginii 44, 59
\leftmarginiii 45, 66
\leftskip 173, 183
legacy commands:

\legacy_if:nTF
129, 149, 231, 301, 317, 336, 342, 353

\legacy_if_gset_false:n . . . 339, 352

M
\makeatletter 145
\maketitle . 139
\mathcolor . 5, 11
\mbox . 359
\medskip 263, 269
\mode . 34, 11
mode commands:

\mode_if_horizontal:TF . . 31, 319, 343
\mode_if_horizontal_p: 25
\mode_if_math:TF 358

\mode_if_vertical_p: 26
\mode_leave_vertical: . . . 34, 338, 361

\month . 5
msg commands:

\msg_error:nnn 118, 166
\msg_fatal:nn 15
\g_msg_module_name_prop 5
\g_msg_module_type_prop 6
\msg_new:nnn 326
\msg_new:nnnn 9, 224
\msg_warning:nn 322

N
\NeedsDocumentMetadata 17
\NewCommandCopy

. 4, 5, 6, 280, 346, 366, 388, 397
\newcounter 20, 72, 73, 74, 132
\NewDocumentCommand 5,

10, 11, 34, 39, 62, 87, 92, 106, 118,
128, 139, 140, 160, 196, 202, 219, 229

\NewDocumentEnvironment 9,
69, 113, 123, 125, 133, 148, 236,
237, 238, 239, 246, 257, 263, 432, 452

\NewEnvironmentCopy 244, 394
\newlabel . 394
\newlength 139, 140
\NewTaggingSocket 127
\NewTaggingSocketPlug 128
\NewTemplateType

. . . . 15, 44, 89, 93, 94, 183, 218, 265
\newtheorem . 388
\newwrite . 153
\nobreakspace 137
\noindent 31, 157, 217, 240, 287
\normalfont 42, 50, 223, 265, 384
\normalsize . 149
\number . 20, 22
\numberline . 117

O
\obeyedline 17, 59
\only . 43, 128
onlyenv (env.) 133
\onslide . 39, 202
opacity commands:

\opacity_begin:n 43, 45
\opacity_end: 47, 47
\opacity_select:n 207

opacity internal commands:
__opacity_backend:nnn 74, 75
__opacity_backend_begin:n . . 46, 51
__opacity_backend_end: 48, 78
\l__opacity_backend_fill_tl 60
__opacity_backend_reset: 86

66

__opacity_backend_reset_fill: . . 88
__opacity_backend_reset_stroke: 89
\c__opacity_backend_stack_int . . . 69
\l__opacity_backend_stroke_tl . . . 61
__opacity_select:nN 46

\openout . 154
\or . . 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
overlayarea (env.) 246
overprint (env.) 263

P
\pagecolor . 43
\pagestyle . 384
\paperheight 57, 58
\paperwidth 58, 295, 343, 344
\par 29, 31, 12, 23, 25, 39, 71,

73, 83, 89, 145, 151, 230, 241, 255,
260, 268, 275, 286, 318, 323, 347, 418

\parindent . 156
\parsep 53, 61, 62, 68, 69
\parskip . 359
\partopsep . 71
\pause . 39, 229
pdfmanagement commands:

\pdfmanagement_add:nnn 62
prg commands:

\prg_generate_conditional_-
variant:Nnn 10

\prg_new_protected_conditional:Npnn
. 3, 3

\prg_return_false: 8, 9
\prg_return_true: 7, 8

\ProcessedArgument 14, 15
\ProcessKeyOptions 135
prop commands:

\prop_gput:Nnn 5, 6
property commands:

\property_new:nnnn 8, 392
\property_record:nn 52, 68, 395
\property_ref:nn 14, 396

\protect . 117
\ProvidesExplClass 3
\put . 57

Q
\quad . 131
quark commands:

\quark_if_recursion_tail_stop:N 136
\quark_if_recursion_tail_stop_-

do:Nn 153, 164
\quark_if_recursion_tail_stop_-

do:nn . 39
\q_recursion_stop 36, 126, 156
\q_recursion_tail 36, 126, 156

\q_stop 65, 73, 99, 104,
147, 156, 186, 189, 199, 201, 289, 294

quotation (env.) 236
quote (env.) . 236

R
\raggedright 78, 177, 243
\refstepcounter 95
\relax . 154
\relsize . 141
\RenewCommandCopy 26
\RenewDocumentCommand 11, 15, 21,

22, 27, 30, 43, 281, 347, 367, 381, 389
\RenewDocumentEnvironment

. 245, 370, 395, 424, 444
\RequirePackage 3, 139, 160, 178,

181, 182, 185, 188, 194, 195, 200, 365
\rmdefault . 196
\rule . 58
rule commands:

\rule:nnn 37, 343

S
scan commands:

\scan_stop: 43
\scriptsize . 84
\section . 72, 81
seq commands:

\seq_get:NN 52
\seq_gpop:NN 48
\seq_gpush:Nn 39, 42
\seq_gput_right:Nn 146
\seq_gremove_all:Nn 75, 76, 77
\seq_map_indexed_inline:Nn 83
\seq_map_inline:Nn 126, 133, 138
\seq_new:N 38, 118
\seq_set_from_clist:Nn 81, 119
\l_tmpa_seq 81, 83

\setcounter 24, 235
\setlength 25, 26, 27, 28, 29, 31,

32, 33, 43, 44, 45, 46, 47, 71, 141, 142
\setmainfont 189
\setmathfont 191
\setsansfont 190
\SetTemplateKeys 110
\sfdefault . 196
\skip . 30
skip commands:

\skip_horizontal:n
. 32, 245, 292, 321, 338, 344

\skip_if_eq_p:nn 22
\skip_new:N 17
\skip_set:Nn 173, 183
\skip_set_eq:NN 20

67

\skip_vertical:n 33, 96, 98,
102, 104, 108, 110, 114, 116, 358, 359

\l_tmpa_skip 355, 356, 358, 359
socket commands:

\socket_use:n 364
\space . 19, 21
\stdcolor . 4
\stdemph . 331
\stdincludegraphics 365
\stditem 280, 284, 285
\stdmathcolor . 4
\stdnewtheorem 388
stdquotation (env.) 236
stdquote (env.) 236
\stdtextbf . 331
\stdtextcolor . 4
\stdtextit . 331
\stdtextmd . 331
\stdtextnormal 331
\stdtextrm . 331
\stdtextsc . 331
\stdtextsf . 331
\stdtextsl . 331
\stdtexttt . 331
\stdtextup . 331
stdverse (env.) 236
\stepcounter . 20
str commands:

\str_clear:N 20, 30, 31
\str_if_empty:NTF 88
\str_if_empty_p:N 42
\str_if_eq:nnTF 17, 59, 85, 108, 110, 154
\str_if_eq_p:nn 6, 7, 23, 300
\str_new:N 9, 11, 12, 15, 137
\str_put_right:Nn 139, 175
\str_replace_all:Nnn 20, 22, 100
\str_set:Nn 18, 26, 113, 115, 119
\str_set_eq:NN 166

\string . 394
\subsection 72, 81
\subsubsection 72, 81
\subtitle . 34
sys commands:

\sys_if_engine_luatex:TF 183
\sys_if_engine_luatex_p: 56, 83
\sys_if_engine_opentype:TF 179
\sys_if_engine_pdftex_p: 55, 82
\sys_if_engine_xetex:TF 65
\sys_if_engine_xetex_p: 57, 84

T
\tabbingsep . 29
\tabcolsep . 26
table (env.) . 121

\tableename . 132
\tableofcontents 160
tag commands:

\tag_get:n 407
\tag_mc_begin:n 173, 180, 414
\tag_mc_end: 171, 178, 420
\tag_resume:n 170, 419
\tag_struct_begin:n . 91, 132, 172, 406
\tag_struct_end: . . . 92, 139, 179, 410
\tag_suspend:n 181, 415

tag internal commands:
\g__tag_title_author_tl 19
\g__tag_title_title_tl 31

\tagpdfparaOff 61
\tagpdfsetup 186, 202
talk internal commands:

__talk_action_:N 55, 55
__talk_action__end:N 55, 56
__talk_action_alert:N 57, 57, 121, 126
__talk_action_begin:n 11, 79, 125,

140, 143, 149, 151, 247, 259, 311, 397
__talk_action_begin_aux:n

. 140, 158, 161
__talk_action_end: 31, 26, 84, 130,

140, 145, 150, 181, 253, 276, 307, 405
__talk_action_invisible:N 63, 63, 179
__talk_action_invisible_end:N .

. 63, 69
__talk_action_only:N 79, 79, 134
__talk_action_only_end:N 79, 84, 135
\l__talk_action_spec_str 149, 289, 386
__talk_action_uncover:N 96, 96
__talk_action_uncover_end:N 96, 102
__talk_action_visible:N 63, 71
__talk_action_visible_end:N . 63, 77
\l__talk_aspect_ratio_str . 106, 155
\l__talk_cnt_reset_seq

. 75, 76, 77, 118, 133, 138, 146
__talk_cnt_restore: 86, 131, 136
__talk_cnt_save: 77, 131, 131
__talk_column_align_bottom:n 50, 50
__talk_column_align_center:n 50, 52
__talk_column_align_top:n . . 50, 67
\l__talk_column_alignment_tl . 28, 86
\l__talk_columns_wd_tl 5, 14, 15
__talk_decode_action:n . . 87, 96, 96
__talk_decode_action:w . . 96, 98, 103
\l__talk_decode_action_str

. 12, 20, 113, 167, 174
\l__talk_decode_actions_bool . . .

. 13, 27, 169, 175
\l__talk_decode_actions_clist . . . 13
\l__talk_decode_actions_str . . 13, 31

68

\l__talk_decode_arg_str
. 9, 26, 32, 119, 167

__talk_decode_check:n . 132, 179, 179
__talk_decode_check:nw 179, 186, 189
__talk_decode_check_range:nnn .

. 179, 195, 196, 208
__talk_decode_check_single:nn .

. 179, 192, 199
__talk_decode_mode:n 46, 55, 55
__talk_decode_mode:nn . . . 78, 81, 83
__talk_decode_mode:w 55, 64, 70
__talk_decode_mode_aux:n 55
__talk_decode_overlay_.:nw 123
__talk_decode_overlay_aux:nNN .

. 123, 147, 150, 151
__talk_decode_overlay_offset:nNn

. 123, 155, 160, 170, 173
__talk_decode_overlay_offset:nNnN

. 123, 159, 162, 171
__talk_decode_overlays:nN

. 123, 126, 134, 140, 177
__talk_decode_overlays:nn

. 89, 108, 115, 123, 123
\l__talk_decode_overlays_bool . .

. 3, 6, 24, 28, 44, 61, 165, 172
\l__talk_decode_overlays_clist . . 10
\l__talk_decode_overlays_str . . .

. 10, 30, 42, 88
__talk_decode_parse:n . 5, 16, 16, 163
__talk_decode_parse:w . 16, 36, 37, 48
__talk_decode_parse_auxi:n

. 16, 17, 18
__talk_decode_parse_auxii:n . . .

. 16, 32, 35
\l__talk_decode_pure_bool

. 7, 29, 43, 93, 112
\l__talk_decode_step_bool

. 8, 125, 127, 146
\l__talk_float_alignment_tl

. 92, 104, 105, 106, 112, 118
\l__talk_fontsize_dim . . 106, 136, 141
\l__talk_footelem_color_tl 183
\l__talk_footelem_font_tl 183
\l__talk_footelem_left_skip 183
\l__talk_footelem_right_skip . . . 183
\l__talk_footer_bg_tl 265
\l__talk_footer_fg_tl 265
\l__talk_footer_font_tl 265
\l__talk_footer_left_skip 265
\l__talk_footer_order_clist 265
\l__talk_footer_right_skip 265
\l__talk_footer_sep_tl 265
\l__talk_frame_alignment_tl

. 89, 94, 148, 158

\l__talk_frame_bool 141, 385, 401
\g__talk_frame_int

. 14, 52, 68, 260, 388, 393, 400
__talk_frame_notag:n . . . 41, 412, 412
__talk_frame_overprint:

. 258, 258, 270, 273, 277,
290, 292, 293, 296, 298, 305, 307, 312

__talk_frame_process:nn
. 398, 398, 429, 438, 449, 457

\g__talk_frame_struct_int 56, 71, 407
\g__talk_frame_subtitle_tl 3, 13, 76
__talk_frame_tag:n 37, 404, 404
\g__talk_frame_tag_bool

. 46, 386, 408, 416
\l__talk_frame_tagging_str

. 17, 18, 20, 22, 34, 149
__talk_frame_title:n 15, 38, 44
\l__talk_frame_title_bool . 106, 422
__talk_frame_title_tagged:n . . .

. 15, 47, 51
\g__talk_frame_title_tl

. 3, 8, 58, 75, 254, 437
\l__talk_frame_verb_bool

. 44, 387, 428, 436, 448, 456
\l__talk_frametitle_after_skip .

. 25, 41
\l__talk_frametitle_before_skip

. 26, 32
\l__talk_frametitle_color_tl . . .

. 27, 34, 35
\l__talk_frametitle_font_tl . . 28, 36
\l__talk_header_bg_tl 218
\l__talk_header_fg_tl 218
\l__talk_header_font_tl 218
\l__talk_header_frametitle_bool 218
\l__talk_header_ht_dim 218
\l__talk_header_left_skip 218
\l__talk_header_right_skip 218
__talk_header_tag_begin:n

. 53, 168, 168, 175
__talk_header_tag_end: . 64, 168, 176
__talk_if_overlay:n 3, 10
__talk_if_overlay:nTF

. 3, 7, 12, 13, 13, 23, 31, 32,
34, 45, 130, 198, 211, 221, 350, 369, 384

__talk_item_parse_spec:n
. 278, 291, 295, 296

__talk_item_parse_spec:w
. 278, 288, 294

__talk_label:n 381, 385, 388
__talk_latexe_frame:n . . 26, 397, 397
\l__talk_list_end_tl

. 302, 308, 314, 325, 350

69

__talk_metadata_name:n
. 306, 309, 314, 330, 330

__talk_mode:n 3
__talk_mode:nTF 3, 12
\l__talk_mode_str 7, 60, 85, 106
\c__talk_modes_clist 50, 57
__talk_onslide:n . 202, 204, 207, 236
\g__talk_onslide_tl

. 79, 83, 170, 209, 210, 214, 218
__talk_opacity_begin:n 40,

40, 53, 66, 67, 74, 75, 94, 99, 213
__talk_opacity_end:

. . . . 40, 45, 56, 70, 78, 103, 192, 215
__talk_opacity_reapply: . 50, 50, 55
\g__talk_opacity_seq . . . 38, 42, 48, 52
\l__talk_overlay_all_bool

. 139, 155, 157, 183
__talk_overlay_arg:n

. 3, 11, 107, 114, 118, 125, 133
__talk_overprint_begin:n

. 239, 239, 247, 264
__talk_overprint_check_ht:n . . .

. 263, 312, 314, 323
\l__talk_overprint_int . 257, 261, 267
__talk_overprint_save_ht:

. 263, 268, 288
__talk_pagecolor:n 43, 48, 49, 52
\c__talk_paper_height_dim 143
\c__talk_paper_width_dim 143
\g__talk_pauses_int

. . . . 10, 4, 74, 130, 176, 234, 235, 236
\l__talk_saved_action_str

. 136, 166, 188
\l__talk_saved_actions_bool

. 136, 168, 190
\l__talk_saved_overlays_bool . . .

. 136, 164, 185
__talk_sect_tag:nn 127, 129, 130
\g__talk_section_tl 66
\l__talk_section_tl 66
\l__talk_shuffle_skip . . 17, 20, 22, 34
__talk_shuffle_skip:n . 18, 18, 43, 47
__talk_slide:nn 9, 9, 402
__talk_slide_align_bottom:n . 94, 94
__talk_slide_align_center:n 94, 100
__talk_slide_align_stretch:n 94, 106
__talk_slide_align_top:n . . 94, 112
__talk_slide_aux:n 9, 45, 56
__talk_slide_begin: 33, 72, 72
\l__talk_slide_box 4, 78, 90
\g__talk_slide_continue_bool . . 3,

27, 30, 36, 40, 85, 205, 213, 219, 224
__talk_slide_end: 49, 72, 81

\g__talk_slide_int
. . 5, 8, 25, 29, 201, 204, 210, 212, 217

\g__talk_subsection_tl 66
\l__talk_subsection_tl 66, 109
\g__talk_subsubsection_tl 66
\l__talk_subsubsection_tl . . 66, 111
__talk_textcmd_eqiv:n . 331, 352, 356
\l__talk_titlelem_after_skip 44
\l__talk_titlelem_before_skip . . . 44
\l__talk_titlelem_color_tl 44
\l__talk_titlelem_font_tl 44
\l__talk_titlelem_tag_begin_tl . . 44
\l__talk_titlelem_tag_end_tl 44
\l__talk_titlepage_alignment_tl . 94
\l__talk_titlepage_framestyle_tl 94
\l__talk_titlepage_order_clist . . 94
__talk_tmp:w 103, 103, 146, 155
\l__talk_tmp_box 14, 24,

60, 73, 82, 87, 104, 242, 252, 261,
274, 274, 279, 283, 285, 293, 299, 320

\l__talk_tmp_tl 12, 18, 21,
23, 48, 52, 53, 101, 105, 303, 305, 306

__talk_toc_aux:nnnn
. 166, 167, 170, 180, 189

__talk_toc_dest:n 166, 193, 196
__talk_toc_dest:w 166, 198, 201
__talk_toc_level:nnnn . 166, 194, 212
\l__talk_uncover_hidden_fp 89
__talk_wallpaper_hrule:Nnn

. 241, 288, 336, 336
talk/sec/title 127
\temporal . 219
TEX and LATEX 2ε commands:

\@arabic 6, 7, 78, 79, 80, 199, 390
\@author 3, 18, 19
\@auxout 303, 392
\@bsphack 383
\@caption 33, 143
\@captype 113
\@contentsline@destination

. 54, 198, 220, 223, 226, 229
\@currentHref 399
\@currentlabel 396
\@currentlabelname 398
\@currenvir 349
\@date . 3, 25
\@definecounter 141
\@endparpenalty 361
\@esphack 386
\@evenfoot 356, 371, 382
\@evenhead 355, 370, 381
\@framenumber 388
\@ignore . 31
\@ignoretrue 90

70

\@inmatherr 349
\@input . 147
\@institute 3, 37
\@itempenalty 328
\@kernel@reserved@label@data . . . 400
\@listI . 56
\@listi 49, 56
\@listii . 57
\@listiii . 64
\@makecaption 150
\@makefnmark 158
\@makefntext 33, 154
\@mpfootins 30
\@nobreakfalse 157
\@noitemerr 342
\@oddfoot . 354, 356, 365, 371, 380, 382
\@oddhead . 350, 355, 360, 370, 375, 381
\@outerparskip 359
\@parboxrestore 76, 147
\@setminipage 148
\@shortauthor 3
\@shortdate . 3
\@shortinstitute 3
\@shortsubtitle 3
\@shorttitle 3
\@starttoc 142, 163
\@subtitle 3, 42
\@title 3, 30, 31
\@totalframes 392
\c@figure 132
\c@frame . 388
\c@page . 199
\c@pauses . 4
\c@section 78
\c@slide . 5
\c@subsection 79
\c@subsubsection 80
\c@table . 132
\check@mathfonts 198
\currentgrouplevel 56
\fnum@figure 132
\fnum@table 132
\Gm@bmargin 291
\Gm@lmargin 225, 272, 338
\Gm@rmargin 227, 273, 321
\Gm@tmargin 224
\hb@xt@ . 158
\if@minipage 148
\ifmeasuring@ 13
\ignorespaces 31
\l@section 166
\l@subsection 166
\l@subsubsection 166
\on@line . 333

\protected@write 392
\ps@plain 348
\ps@talk . 348
\ps@wallpaper 348
\set@color 61
\std@definecounter 141

tex commands:
\tex_currentgrouplevel:D . . 304, 305
\tex_fontdimen:D 61
\tex_hsize:D 22, 33
\tex_lastskip:D 20
\tex_setbox:D 20, 31
\tex_textfont:D 61
\tex_unskip:D 29
\tex_vbox:D 20, 31
\tex_vrule:D 39

text commands:
\text_purify:n 58, 101, 129
\text_titlecase_first:n 134

\textasteriskcentered 40
\textbf . 331
\textbullet . 38
\textcolor . 6, 11
\textendash . 39
\textheight . 87
\textit . 331
\textmd . 331
\textnormal . 331
\textperiodcentered 41
\textrm . 331
\textsc . 331
\textsf . 331
\textsl . 331
\texttt . 331
\textup . 331
\textwidth 29, 8, 15, 16, 74, 75, 263
\theenumi . 34
\theenumii . 35
\theenumiii . 36
\theenumiv . 37
\thefigure . 132
\theframe . 388
\thepage 6, 199, 397
\thepauses . 4
\thesection . 72
\theslide . 5
\thesubsection 72
\thesubsubsection 72
\thetable . 132
\thispagestyle 129
\tiny . 271
\title . 15
tl commands:

\tl_clear:N 109, 111, 308

71

\tl_gclear:N . . . 12, 13, 75, 76, 79, 210
\tl_gput_right:Nn 214
\tl_gset:Nn 8,

13, 18, 25, 30, 37, 42, 293, 296, 437
\tl_gset_eq:NN 14, 19, 31
\tl_if_blank:nTF

. 37, 76, 92, 107, 114, 194
\tl_if_blank_p:n 22, 299
\tl_if_empty:NTF 34,

68, 128, 170, 203, 247, 300, 309, 339
\tl_if_empty:nTF 64, 191, 199
\tl_if_exist:NTF 290, 332
\tl_map_inline:nn 331
\tl_new:N . . 3, 4, 66, 67, 68, 69, 70,

71, 92, 105, 133, 135, 148, 218, 292, 314
\tl_retokenize:n 63
\tl_set:Nn 12,

60, 61, 104, 105, 106, 106, 115, 116,
117, 121, 122, 123, 124, 134, 136, 302

\tl_set_eq:NN 42, 158
\tl_to_str:n

. 52, 53, 64, 79, 99, 104, 147, 156, 439
\tl_trim_spaces:n 47
\tl_use:N 83, 89, 209

\today . 3
token commands:

\token_if_eq_meaning:NNTF . 158, 169
\token_to_str:N 71, 72

\topsep 52, 60, 67

U
\uncover . 104
uncoverenv (env.) 113
\unskip . 21

use commands:
\use:N 86, 89, 96, 99, 103, 135, 174
\use:n . 46,

48, 60, 68, 85, 101, 144, 158, 192, 371
\use_none:n 189

\UseHookWithArguments
. 219, 222, 224, 227, 391

\UseInstance . 100, 126, 134, 177, 253,
305, 313, 362, 367, 373, 374, 377, 380

\UseStructureName 102, 135
\UseTaggingSocket . . 96, 97, 107, 146, 148
\UseTemplate 142, 145

V
\value 115, 191, 203, 214
vbox commands:

\vbox:n 51, 54, 63
\vbox_set:Nw 78, 82, 261
\vbox_set_end: 84, 85, 87, 249, 266, 273
\vbox_set_to_wd:Nnn 18, 293
\vbox_set_to_wd:Nnw 27, 73, 242
\vbox_to_ht:nn 87, 102, 250, 276
\vbox_top:n 68
\vbox_unpack_drop:N 87, 90

vcoffin commands:
\vcoffin_set:Nnn 1

verse (env.) . 236
\vfil 232, 253, 280
\visible . 104
visibleenv (env.) 113
\vspace 32, 41, 66, 76

Y
\year . 22

72

	Contents
	I ltx-talk – Overall set up
	1 ltx-talk implementation
	1.1 Set up
	1.2 Additions for expl3
	1.3 Extra variants
	1.4 Scratch space
	1.5 Option handling
	1.6 Setting up
	1.7 Math support
	1.8 Font selection
	1.9 Hyperlinks
	1.10 Tagging

	II ltx-talk-color – Color definitions
	1 ltx-talk-color implementation
	1.1 Existing definitions
	1.2 Document (and interface) commands
	1.3 Color definition
	1.4 Semantic colors

	III ltx-talk-decode – Decoding overlay specs
	1 ltx-talk-decode implementation

	IV ltx-talk-frame – The structure of frames
	1 ltx-talk-frame implementation
	1.1 Slides in frames
	1.2 Counters
	1.3 Frame options
	1.4 Tagging for headers
	1.5 Wallpaper
	1.6 The frame environment

	V ltx-talk-frame – The structure of frames
	1 ltx-talk-frame-structure implementation
	1.1 Columns
	1.2 Floats
	1.3 Footnotes

	VI ltx-talk-mode – Modes
	1 ltx-talk-mode implementation

	VII ltx-talk-overlay – Overlays
	1 ltx-talk-overlay implementation
	1.1 Utilities
	1.2 Opacity utilities
	1.3 Action commands and environments
	1.4 Non-action commands and environments
	1.5 Fixed-size areas
	1.6 Adding overlays to existing commands

	VIII ltx-talk-required – "Required" definitions
	1 ltx-talk-required implementation
	1.1 Standard design settings
	1.2 List support

	IX ltx-talk-structure – Structural commands
	1 ltx-talk-structure implementation
	1.1 Frame title
	1.2 Sectioning
	1.3 Table of contents
	1.4 Block environments
	1.5 Lists
	1.6 Theorems, etc.

	X ltx-talk-title – Title pages
	1 ltx-talk-title implementation

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	Y

