Builtin variables:
variables affecting bash script behavior
$BASH
The path to the Bash binary itself
bash$
echo $BASH
/bin/bash
$BASH_ENV
An environmental variable pointing to a Bash startup file to be read when a script is invoked
$BASH_SUBSHELL
A variable indicating the subshell level. This is a new addition to Bash, version 3.
See Example 21.1, “Variable scope in a subshell” for usage.
$BASHPID
Process ID of the current instance of Bash. This is not the same as the $$ variable, but it often gives the same result.
bash4$
echo $$
11015
bash4$
echo $BASHPID
11015
bash4$
ps ax | grep bash4
11015 pts/2 R 0:00 bash4
#!/bin/bash4 echo "\$\$ outside of subshell = $$" # 9602 echo "\$BASH_SUBSHELL outside of subshell = $BASH_SUBSHELL" # 0 echo "\$BASHPID outside of subshell = $BASHPID" # 9602 echo ( echo "\$\$ inside of subshell = $$" # 9602 echo "\$BASH_SUBSHELL inside of subshell = $BASH_SUBSHELL" # 1 echo "\$BASHPID inside of subshell = $BASHPID" ) # 9603 # Note that $$ returns PID of parent process.
$BASH_VERSINFO[n]
A 6-element array
containing version information about the installed release
of Bash. This is similar to $BASH_VERSION
,
below, but a bit more detailed.
# Bash version info: for n in 0 1 2 3 4 5 do echo "BASH_VERSINFO[$n] = ${BASH_VERSINFO[$n]}" done # BASH_VERSINFO[0] = 3 # Major version no. # BASH_VERSINFO[1] = 00 # Minor version no. # BASH_VERSINFO[2] = 14 # Patch level. # BASH_VERSINFO[3] = 1 # Build version. # BASH_VERSINFO[4] = release # Release status. # BASH_VERSINFO[5] = i386-redhat-linux-gnu # Architecture # (same as $MACHTYPE).
$BASH_VERSION
The version of Bash installed on the system
bash$
echo $BASH_VERSION
3.2.25(1)-release
tcsh%
echo $BASH_VERSION
BASH_VERSION: Undefined variable.
Checking $BASH_VERSION is a good method of determining which shell is running. $SHELL does not necessarily give the correct answer.
$CDPATH
A colon-separated list of search paths
available to the cd
command, similar in function to the $PATH variable for binaries.
The $CDPATH
variable may be set in the
local ~/.bashrc
file.
bash$
cd bash-doc
bash: cd: bash-doc: No such file or directory
bash$
CDPATH=/usr/share/doc
bash$
cd bash-doc
/usr/share/doc/bash-doc
bash$
echo $PWD
/usr/share/doc/bash-doc
$DIRSTACK
The top value in the directory stack [41] (affected by pushd and popd)
This builtin variable corresponds to the dirs command, however dirs shows the entire contents of the directory stack.
$EDITOR
The default editor invoked by a script, usually vi or emacs.
$EUID
“effective” user ID number
Identification number of whatever identity the current user has assumed, perhaps by means of su.
The $EUID
is not necessarily
the same as the $UID.
$FUNCNAME
Name of the current function
xyz23 () { echo "$FUNCNAME now executing." # xyz23 now executing. } xyz23 echo "FUNCNAME = $FUNCNAME" # FUNCNAME = # Null value outside a function.
See also Example A.50, “An alternate version of the getopt-simple.sh script”.
$GLOBIGNORE
A list of filename patterns to be excluded from matching in globbing.
$GROUPS
Groups current user belongs to
This is a listing (array) of the group id numbers for
current user, as recorded in
/etc/passwd
and /etc/group
.
root#
echo $GROUPS
0
root#
echo ${GROUPS[1]}
1
root#
echo ${GROUPS[5]}
6
$HOME
Home directory of the user, usually /home/username
(see Example 10.7, “Using parameter substitution and error messages”)
$HOSTNAME
The hostname command
assigns the system host name at bootup in an init script.
However, the gethostname()
function
sets the Bash internal variable $HOSTNAME
.
See also Example 10.7, “Using parameter substitution and error messages”.
$HOSTTYPE
host type
Like $MACHTYPE, identifies the system hardware.
bash$
echo $HOSTTYPE
i686
$IFS
internal field separator
This variable determines how Bash recognizes fields, or word boundaries, when it interprets character strings.
$IFS defaults to whitespace (space,
tab, and newline), but may be changed, for example,
to parse a comma-separated data file. Note that
$* uses the first
character held in $IFS
. See Example 5.1, “Echoing Weird Variables”.
bash$
echo "$IFS"
(With $IFS set to default, a blank line displays.)
bash$
echo "$IFS" | cat -vte
^I$ $
(Show whitespace: here a single space, ^I [horizontal tab], and newline, and display "$" at end-of-line.)
bash$
bash -c 'set w x y z; IFS=":-;"; echo "$*"'
w:x:y:z
(Read commands from string and assign any arguments to pos params.)
Set $IFS
to eliminate whitespace
in pathnames.
IFS="$(printf '\n\t')" # Per David Wheeler.
$IFS
does not handle whitespace
the same as it does other characters.
Example 9.1. $IFS and whitespace
#!/bin/bash # ifs.sh var1="a+b+c" var2="d-e-f" var3="g,h,i" IFS=+ # The plus sign will be interpreted as a separator. echo $var1 # a b c echo $var2 # d-e-f echo $var3 # g,h,i echo IFS="-" # The plus sign reverts to default interpretation. # The minus sign will be interpreted as a separator. echo $var1 # a+b+c echo $var2 # d e f echo $var3 # g,h,i echo IFS="," # The comma will be interpreted as a separator. # The minus sign reverts to default interpretation. echo $var1 # a+b+c echo $var2 # d-e-f echo $var3 # g h i echo IFS=" " # The space character will be interpreted as a separator. # The comma reverts to default interpretation. echo $var1 # a+b+c echo $var2 # d-e-f echo $var3 # g,h,i # ======================================================== # # However ... # $IFS treats whitespace differently than other characters. output_args_one_per_line() { for arg do echo "[$arg]" done # ^ ^ Embed within brackets, for your viewing pleasure. } echo; echo "IFS=\" \"" echo "-------" IFS=" " var=" a b c " # ^ ^^ ^^^ output_args_one_per_line $var # output_args_one_per_line `echo " a b c "` # [a] # [b] # [c] echo; echo "IFS=:" echo "-----" IFS=: var=":a::b:c:::" # Same pattern as above, # ^ ^^ ^^^ #+ but substituting ":" for " " ... output_args_one_per_line $var # [] # [a] # [] # [b] # [c] # [] # [] # Note "empty" brackets. # The same thing happens with the "FS" field separator in awk. echo exit
(Many thanks, Stéphane Chazelas, for clarification and above examples.)
See also Example 16.41, “Analyzing a spam domain”, Example 11.8, “A grep replacement
for binary files”, and Example 19.14, “Parsing a mailbox”
for instructive examples of using
$IFS
.
$IGNOREEOF
Ignore EOF: how many end-of-files (control-D) the shell will ignore before logging out.
$LC_COLLATE
Often set in the .bashrc
or /etc/profile
files, this
variable controls collation order in filename
expansion and pattern matching. If mishandled,
LC_COLLATE
can cause unexpected results in
filename globbing.
As of version 2.05 of Bash,
filename globbing no longer distinguishes between lowercase
and uppercase letters in a character range between
brackets. For example, ls [A-M]*
would match both File1.txt
and file1.txt
. To revert to
the customary behavior of bracket matching, set
LC_COLLATE
to C
by an export LC_COLLATE=C
in /etc/profile
and/or
~/.bashrc
.
$LC_CTYPE
This internal variable controls character interpretation in globbing and pattern matching.
$LINENO
This variable is the line number of the shell script in which this variable appears. It has significance only within the script in which it appears, and is chiefly useful for debugging purposes.
# *** BEGIN DEBUG BLOCK *** last_cmd_arg=$_ # Save it. echo "At line number $LINENO, variable \"v1\" = $v1" echo "Last command argument processed = $last_cmd_arg" # *** END DEBUG BLOCK ***
$MACHTYPE
machine type
Identifies the system hardware.
bash$
echo $MACHTYPE
i686
$OLDPWD
Old working directory (“OLD-Print-Working-Directory”, previous directory you were in).
$OSTYPE
operating system type
bash$
echo $OSTYPE
linux
$PATH
Path to binaries, usually
/usr/bin/
,
/usr/X11R6/bin/
,
/usr/local/bin
, etc.
When given a command, the shell automatically does
a hash table search on the directories listed in the
path for the executable. The path
is stored in the environmental
variable, $PATH
, a list
of directories, separated by colons. Normally,
the system stores the $PATH
definition in /etc/profile
and/or ~/.bashrc
(see Appendix H, Important Files).
bash$
echo $PATH/bin:/usr/bin:/usr/local/bin:/usr/X11R6/bin:/sbin:/usr/sbin
PATH=${PATH}:/opt/bin
appends
the /opt/bin
directory to the current path. In a script, it may be
expedient to temporarily add a directory to the path
in this way. When the script exits, this restores the
original $PATH
(a child process, such
as a script, may not change the environment of the parent
process, the shell).
The current “working directory”,
./
, is usually
omitted from the $PATH
as a security
measure.
$PIPESTATUS
Array variable holding exit status(es) of last executed foreground pipe.
bash$
echo $PIPESTATUS
0
bash$
ls -al | bogus_command
bash: bogus_command: command not found
bash$
echo ${PIPESTATUS[1]}
127
bash$
ls -al | bogus_command
bash: bogus_command: command not found
bash$
echo $?
127
The members of the $PIPESTATUS
array hold the exit status of each respective command
executed in a pipe. $PIPESTATUS[0]
holds the exit status of the first command in the pipe,
$PIPESTATUS[1]
the exit status of
the second command, and so on.
The $PIPESTATUS
variable
may contain an erroneous 0 value
in a login shell (in releases prior to 3.0 of Bash).
tcsh%
bash
bash$
who | grep nobody | sort
bash$
echo ${PIPESTATUS[*]}
0
The above lines contained in a script would produce the expected
0 1 0
output.
Thank you, Wayne Pollock for pointing this out and supplying the above example.
The $PIPESTATUS
variable gives
unexpected results in some contexts.
bash$
echo $BASH_VERSION
3.00.14(1)-release
bash$
$ ls | bogus_command | wc
bash: bogus_command: command not found 0 0 0
bash$
echo ${PIPESTATUS[@]}
141 127 0
Chet Ramey attributes the above output to the behavior of
ls. If ls
writes to a pipe whose output is not
read, then SIGPIPE
kills it,
and its exit status
is 141. Otherwise
its exit status is 0,
as expected. This likewise is the case for tr.
$PIPESTATUS
is a
“volatile” variable. It needs to be
captured immediately after the pipe in question, before
any other command intervenes.
bash$
$ ls | bogus_command | wc
bash: bogus_command: command not found 0 0 0
bash$
echo ${PIPESTATUS[@]}
0 127 0
bash$
echo ${PIPESTATUS[@]}
0
The pipefail option
may be useful in cases where
$PIPESTATUS
does not give the desired
information.
$PPID
The $PPID
of a process is
the process ID (pid
) of its parent process.
[42]
Compare this with the pidof command.
$PROMPT_COMMAND
A variable holding a command to be executed
just before the primary prompt, $PS1
is to be displayed.
$PS1
This is the main prompt, seen at the command-line.
$PS2
The secondary prompt, seen when additional input is expected. It displays as “>”.
$PS3
The tertiary prompt, displayed in a select loop (see Example 11.30, “Creating menus using select”).
$PS4
The quartenary prompt, shown at the beginning of each line of output when invoking a script with the -x [verbose trace] option. It displays as “+”.
As a debugging aid, it may be useful to embed diagnostic
information in $PS4
.
P4='$(read time junk < /proc/$$/schedstat; echo "@@@ $time @@@ " )' # Per suggestion by Erik Brandsberg. set -x # Various commands follow ...
$PWD
Working directory (directory you are in at the time)
This is the analog to the pwd builtin command.
#!/bin/bash E_WRONG_DIRECTORY=85 clear # Clear the screen. TargetDirectory=/home/bozo/projects/GreatAmericanNovel cd $TargetDirectory echo "Deleting stale files in $TargetDirectory." if [ "$PWD" != "$TargetDirectory" ] then # Keep from wiping out wrong directory by accident. echo "Wrong directory!" echo "In $PWD, rather than $TargetDirectory!" echo "Bailing out!" exit $E_WRONG_DIRECTORY fi rm -rf * rm .[A-Za-z0-9]* # Delete dotfiles. # rm -f .[^.]* ..?* to remove filenames beginning with multiple dots. # (shopt -s dotglob; rm -f *) will also work. # Thanks, S.C. for pointing this out. # A filename (`basename`) may contain all characters in the 0 - 255 range, #+ except "/". # Deleting files beginning with weird characters, such as - #+ is left as an exercise. (Hint: rm ./-weirdname or rm -- -weirdname) result=$? # Result of delete operations. If successful = 0. echo ls -al # Any files left? echo "Done." echo "Old files deleted in $TargetDirectory." echo # Various other operations here, as necessary. exit $result
$REPLY
The default value when a variable is not supplied to read. Also applicable to select menus, but only supplies the item number of the variable chosen, not the value of the variable itself.
#!/bin/bash # reply.sh # REPLY is the default value for a 'read' command. echo echo -n "What is your favorite vegetable? " read echo "Your favorite vegetable is $REPLY." # REPLY holds the value of last "read" if and only if #+ no variable supplied. echo echo -n "What is your favorite fruit? " read fruit echo "Your favorite fruit is $fruit." echo "but..." echo "Value of \$REPLY is still $REPLY." # $REPLY is still set to its previous value because #+ the variable $fruit absorbed the new "read" value. echo exit 0
$SECONDS
The number of seconds the script has been running.
#!/bin/bash TIME_LIMIT=10 INTERVAL=1 echo echo "Hit Control-C to exit before $TIME_LIMIT seconds." echo while [ "$SECONDS" -le "$TIME_LIMIT" ] do # $SECONDS is an internal shell variable. if [ "$SECONDS" -eq 1 ] then units=second else units=seconds fi echo "This script has been running $SECONDS $units." # On a slow or overburdened machine, the script may skip a count #+ every once in a while. sleep $INTERVAL done echo -e "\a" # Beep! exit 0
$SHELLOPTS
The list of enabled shell options, a readonly variable.
bash$
echo $SHELLOPTS
braceexpand:hashall:histexpand:monitor:history:interactive-comments:emacs
$SHLVL
Shell level, how deeply Bash is nested. [43] If, at the command-line, $SHLVL is 1, then in a script it will increment to 2.
This variable is not affected by subshells. Use $BASH_SUBSHELL when you need an indication of subshell nesting.
$TMOUT
If the $TMOUT
environmental variable is set to a non-zero value
time
, then the shell prompt will time out
after $time
seconds. This will cause a
logout.
As of version 2.05b of Bash, it is now possible to use
$TMOUT
in a script in combination
with read.
# Works in scripts for Bash, versions 2.05b and later. TMOUT=3 # Prompt times out at three seconds. echo "What is your favorite song?" echo "Quickly now, you only have $TMOUT seconds to answer!" read song if [ -z "$song" ] then song="(no answer)" # Default response. fi echo "Your favorite song is $song."
There are other, more complex, ways of implementing timed input in a script. One alternative is to set up a timing loop to signal the script when it times out. This also requires a signal handling routine to trap (see Example 32.5, “Trapping at exit”) the interrupt generated by the timing loop (whew!).
Example 9.2. Timed Input
#!/bin/bash # timed-input.sh # TMOUT=3 Also works, as of newer versions of Bash. TIMER_INTERRUPT=14 TIMELIMIT=3 # Three seconds in this instance. # May be set to different value. PrintAnswer() { if [ "$answer" = TIMEOUT ] then echo $answer else # Don't want to mix up the two instances. echo "Your favorite veggie is $answer" kill $! # Kills no-longer-needed TimerOn function #+ running in background. # $! is PID of last job running in background. fi } TimerOn() { sleep $TIMELIMIT && kill -s 14 $$ & # Waits 3 seconds, then sends sigalarm to script. } Int14Vector() { answer="TIMEOUT" PrintAnswer exit $TIMER_INTERRUPT } trap Int14Vector $TIMER_INTERRUPT # Timer interrupt (14) subverted for our purposes. echo "What is your favorite vegetable " TimerOn read answer PrintAnswer # Admittedly, this is a kludgy implementation of timed input. # However, the "-t" option to "read" simplifies this task. # See the "t-out.sh" script. # However, what about timing not just single user input, #+ but an entire script? # If you need something really elegant ... #+ consider writing the application in C or C++, #+ using appropriate library functions, such as 'alarm' and 'setitimer.' exit 0
An alternative is using stty.
Example 9.3. Once more, timed input
#!/bin/bash # timeout.sh # Written by Stephane Chazelas, #+ and modified by the document author. INTERVAL=5 # timeout interval timedout_read() { timeout=$1 varname=$2 old_tty_settings=`stty -g` stty -icanon min 0 time ${timeout}0 eval read $varname # or just read $varname stty "$old_tty_settings" # See man page for "stty." } echo; echo -n "What's your name? Quick! " timedout_read $INTERVAL your_name # This may not work on every terminal type. # The maximum timeout depends on the terminal. #+ (it is often 25.5 seconds). echo if [ ! -z "$your_name" ] # If name input before timeout ... then echo "Your name is $your_name." else echo "Timed out." fi echo # The behavior of this script differs somewhat from "timed-input.sh." # At each keystroke, the counter resets. exit 0
Perhaps the simplest method is using the
-t
option to read.
Example 9.4. Timed read
#!/bin/bash # t-out.sh [time-out] # Inspired by a suggestion from "syngin seven" (thanks). TIMELIMIT=4 # 4 seconds read -t $TIMELIMIT variable <&1 # ^^^ # In this instance, "<&1" is needed for Bash 1.x and 2.x, # but unnecessary for Bash 3+. echo if [ -z "$variable" ] # Is null? then echo "Timed out, variable still unset." else echo "variable = $variable" fi exit 0
$UID
User ID number
Current user's user identification number, as
recorded in /etc/passwd
This is the current user's real id, even if she has
temporarily assumed another identity through su. $UID
is a
readonly variable, not subject to change from the command
line or within a script, and is the counterpart to the
id builtin.
Example 9.5. Am I root?
#!/bin/bash # am-i-root.sh: Am I root or not? ROOT_UID=0 # Root has $UID 0. if [ "$UID" -eq "$ROOT_UID" ] # Will the real "root" please stand up? then echo "You are root." else echo "You are just an ordinary user (but mom loves you just the same)." fi exit 0 # ============================================================= # # Code below will not execute, because the script already exited. # An alternate method of getting to the root of matters: ROOTUSER_NAME=root username=`id -nu` # Or... username=`whoami` if [ "$username" = "$ROOTUSER_NAME" ] then echo "Rooty, toot, toot. You are root." else echo "You are just a regular fella." fi
See also Example 2.3, “cleanup: An enhanced and generalized version of above scripts.”.
The variables $ENV
,
$LOGNAME
, $MAIL
,
$TERM
, $USER
, and
$USERNAME
are not
Bash builtins. These are,
however, often set as environmental variables in
one of the Bash or
login startup files. $SHELL
,
the name of the user's login shell, may be set from
/etc/passwd
or in an “init”
script, and it is likewise not a Bash builtin.
tcsh%
echo $LOGNAME
bozo
tcsh%
echo $SHELL
/bin/tcsh
tcsh%
echo $TERM
rxvt
bash$
echo $LOGNAME
bozo
bash$
echo $SHELL
/bin/tcsh
bash$
echo $TERM
rxvt
Positional Parameters
$0
, $1
,
$2
, etc.Positional parameters, passed from command line to script, passed to a function, or set to a variable (see Example 4.5, “Positional Parameters” and Example 15.16, “Using set with positional parameters”)
$#
Number of command-line arguments [44] or positional parameters (see Example 36.2, “ A slightly more complex shell wrapper”)
$*
All of the positional parameters, seen as a single word, "$*" is equivalent to "$1${IFS:0:1}$2${IFS:0:1}$3..."
“$*
” must be
quoted.
$@
Same as $*, but each parameter is a quoted string, that is, the parameters are passed on intact, without interpretation or expansion. This means, among other things, that each parameter in the argument list is seen as a separate word, "$@" is equivalent to "$1" "$2" ...
Of course, “$@
”
should be quoted.
Example 9.6. arglist: Listing arguments with $* and $@
#!/bin/bash # arglist.sh # Invoke this script with several arguments, such as "one two three" ... E_BADARGS=85 if [ ! -n "$1" ] then echo "Usage: `basename $0` argument1 argument2 etc." exit $E_BADARGS fi echo index=1 # Initialize count. echo "Listing args with \"\$*\":" for arg in "$*" # Doesn't work properly if "$*" isn't quoted. do echo "Arg #$index = $arg" let "index+=1" done # $* sees all arguments as single word. echo "Entire arg list seen as single word." echo index=1 # Reset count. # What happens if you forget to do this? echo "Listing args with \"\$@\":" for arg in "$@" do echo "Arg #$index = $arg" let "index+=1" done # $@ sees arguments as separate words. echo "Arg list seen as separate words." echo index=1 # Reset count. echo "Listing args with \$* (unquoted):" for arg in $* do echo "Arg #$index = $arg" let "index+=1" done # Unquoted $* sees arguments as separate words. echo "Arg list seen as separate words." exit 0
Following a shift, the
$@
holds the remaining command-line
parameters, lacking the previous $1
,
which was lost.
#!/bin/bash # Invoke with ./scriptname 1 2 3 4 5 echo "$@" # 1 2 3 4 5 shift echo "$@" # 2 3 4 5 shift echo "$@" # 3 4 5 # Each "shift" loses parameter $1. # "$@" then contains the remaining parameters.
The $@
special parameter finds
use as a tool for filtering input into shell scripts. The
cat "$@" construction accepts input
to a script either from stdin
or
from files given as parameters to the script. See Example 16.24, “rot13: ultra-weak encryption.” and Example 16.25, “Generating “Crypto-Quote” Puzzles”.
The $*
and $@
parameters sometimes display inconsistent and
puzzling behavior, depending on the setting of $IFS.
Example 9.7. Inconsistent $*
and $@
behavior
#!/bin/bash # Erratic behavior of the "$*" and "$@" internal Bash variables, #+ depending on whether or not they are quoted. # Demonstrates inconsistent handling of word splitting and linefeeds. set -- "First one" "second" "third:one" "" "Fifth: :one" # Setting the script arguments, $1, $2, $3, etc. echo echo 'IFS unchanged, using "$*"' c=0 for i in "$*" # quoted do echo "$((c+=1)): [$i]" # This line remains the same in every instance. # Echo args. done echo --- echo 'IFS unchanged, using $*' c=0 for i in $* # unquoted do echo "$((c+=1)): [$i]" done echo --- echo 'IFS unchanged, using "$@"' c=0 for i in "$@" do echo "$((c+=1)): [$i]" done echo --- echo 'IFS unchanged, using $@' c=0 for i in $@ do echo "$((c+=1)): [$i]" done echo --- IFS=: echo 'IFS=":", using "$*"' c=0 for i in "$*" do echo "$((c+=1)): [$i]" done echo --- echo 'IFS=":", using $*' c=0 for i in $* do echo "$((c+=1)): [$i]" done echo --- var=$* echo 'IFS=":", using "$var" (var=$*)' c=0 for i in "$var" do echo "$((c+=1)): [$i]" done echo --- echo 'IFS=":", using $var (var=$*)' c=0 for i in $var do echo "$((c+=1)): [$i]" done echo --- var="$*" echo 'IFS=":", using $var (var="$*")' c=0 for i in $var do echo "$((c+=1)): [$i]" done echo --- echo 'IFS=":", using "$var" (var="$*")' c=0 for i in "$var" do echo "$((c+=1)): [$i]" done echo --- echo 'IFS=":", using "$@"' c=0 for i in "$@" do echo "$((c+=1)): [$i]" done echo --- echo 'IFS=":", using $@' c=0 for i in $@ do echo "$((c+=1)): [$i]" done echo --- var=$@ echo 'IFS=":", using $var (var=$@)' c=0 for i in $var do echo "$((c+=1)): [$i]" done echo --- echo 'IFS=":", using "$var" (var=$@)' c=0 for i in "$var" do echo "$((c+=1)): [$i]" done echo --- var="$@" echo 'IFS=":", using "$var" (var="$@")' c=0 for i in "$var" do echo "$((c+=1)): [$i]" done echo --- echo 'IFS=":", using $var (var="$@")' c=0 for i in $var do echo "$((c+=1)): [$i]" done echo # Try this script with ksh or zsh -y. exit 0 # This example script written by Stephane Chazelas, #+ and slightly modified by the document author.
The $@ and $* parameters differ only when between double quotes.
Example 9.8. $*
and $@
when
$IFS
is empty
#!/bin/bash # If $IFS set, but empty, #+ then "$*" and "$@" do not echo positional params as expected. mecho () # Echo positional parameters. { echo "$1,$2,$3"; } IFS="" # Set, but empty. set a b c # Positional parameters. mecho "$*" # abc,, # ^^ mecho $* # a,b,c mecho $@ # a,b,c mecho "$@" # a,b,c # The behavior of $* and $@ when $IFS is empty depends #+ on which Bash or sh version being run. # It is therefore inadvisable to depend on this "feature" in a script. # Thanks, Stephane Chazelas. exit
Other Special Parameters
$-
Flags passed to script (using set). See Example 15.16, “Using set with positional parameters”.
This was originally a ksh construct adopted into Bash, and unfortunately it does not seem to work reliably in Bash scripts. One possible use for it is to have a script self-test whether it is interactive.
$!
PID (process ID) of last job run in background
LOG=$0.log COMMAND1="sleep 100" echo "Logging PIDs background commands for script: $0" >> "$LOG" # So they can be monitored, and killed as necessary. echo >> "$LOG" # Logging commands. echo -n "PID of \"$COMMAND1\": " >> "$LOG" ${COMMAND1} & echo $! >> "$LOG" # PID of "sleep 100": 1506 # Thank you, Jacques Lederer, for suggesting this.
Using $!
for job control:
possibly_hanging_job & { sleep ${TIMEOUT}; eval 'kill -9 $!' &> /dev/null; } # Forces completion of an ill-behaved program. # Useful, for example, in init scripts. # Thank you, Sylvain Fourmanoit, for this creative use of the "!" variable.
Or, alternately:
# This example by Matthew Sage. # Used with permission. TIMEOUT=30 # Timeout value in seconds count=0 possibly_hanging_job & { while ((count < TIMEOUT )); do eval '[ ! -d "/proc/$!" ] && ((count = TIMEOUT))' # /proc is where information about running processes is found. # "-d" tests whether it exists (whether directory exists). # So, we're waiting for the job in question to show up. ((count++)) sleep 1 done eval '[ -d "/proc/$!" ] && kill -15 $!' # If the hanging job is running, kill it. } # -------------------------------------------------------------- # # However, this may not work as specified if another process #+ begins to run after the "hanging_job" . . . # In such a case, the wrong job may be killed. # Ariel Meragelman suggests the following fix. TIMEOUT=30 count=0 # Timeout value in seconds possibly_hanging_job & { while ((count < TIMEOUT )); do eval '[ ! -d "/proc/$lastjob" ] && ((count = TIMEOUT))' lastjob=$! ((count++)) sleep 1 done eval '[ -d "/proc/$lastjob" ] && kill -15 $lastjob' } exit
$_
Special variable set to final argument of previous command executed.
Example 9.9. Underscore variable
#!/bin/bash echo $_ # /bin/bash # Just called /bin/bash to run the script. # Note that this will vary according to #+ how the script is invoked. du >/dev/null # So no output from command. echo $_ # du ls -al >/dev/null # So no output from command. echo $_ # -al (last argument) : echo $_ # :
$?
Exit status of a command, function, or the script itself (see Example 24.7, “Maximum of two numbers”)
$$
Process ID (PID) of
the script itself.
[45]
The $$
variable often
finds use in scripts to construct “unique”
temp file names (see Example 32.6, “Cleaning up after Control-C”, Example 16.31, “Unpacking an rpm archive”, and Example 15.27, “A script that kills itself”).
This is usually simpler than invoking mktemp.
[41]
A stack register
is a set of consecutive memory locations, such that
the values stored (pushed)
are retrieved (popped)
in reverse order. The last
value stored is the first retrieved. This is
sometimes called a LIFO
(last-in-first-out) or
pushdown stack.
[42] The PID of the currently running script is
$$
, of course.
[43] Somewhat analogous to recursion, in this context nesting refers to a pattern embedded within a larger pattern. One of the definitions of nest, according to the 1913 edition of Webster's Dictionary, illustrates this beautifully: “A collection of boxes, cases, or the like, of graduated size, each put within the one next larger.”
[44] The words “argument” and “parameter” are often used interchangeably. In the context of this document, they have the same precise meaning: a variable passed to a script or function.
[45] Within a script, inside a subshell,
$$
returns
the PID of the script, not the
subshell.